Number Info
ID | 12653 |
Size | 353 digits / 1171 bits |
Value | 22550774462216007138323776434405343300729780498329101524606451584832098425789638754835956450085576449179629129573430144086448339357175014758486132893017781754849600088136005988246655372584670765483753089740891740716025007469669602748639869495822805640018114566222757506078718774880864205374248237148424664627769078190456191619793250079881535609721363218 |
Progress | 100.00% |
Completed | yes |
Small factors | 2 × 32 × 1123 × 7867 × 812465736288015001<18> |
Cofactor | 174540009463326988421041137258170038335300141668264315180061091671110834728205597796576601032584231500861015036680132747909874534224698590953543564376105155684615834646713310968085493380301421909014817806321243925070053371688868366336636961295363693490537379170636997410564678291790467423763117949047717463629815133215523542361 (composite) |
Factorization
Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>
22550774462216007138323776434405343300729780498329101524606451584832098425789638754835956450085576449179629129573430144086448339357175014758486132893017781754849600088136005988246655372584670765483753089740891740716025007469669602748639869495822805640018114566222757506078718774880864205374248237148424664627769078190456191619793250079881535609721363218 = 2 × 32 × 1123 × 7867 × 812465736288015001<18> × 644758767768719513252359155552256315187<39> × 131201440883614482281337343582542333331680164595088521457792131014467782167284048785804752561<93> × 1008572893139752900934156231322740896573215583906496103193457663458023616204108484263061467307<94> × 2045746619945651407387161668603331150400913977375046129956236208340798695453862863477529892629289089689<103>
Categories
- Lucas Sequence (index 1686)