Number Info
| ID | 12798 |
| Size | 383 digits / 1272 bits |
| Value | 45328286034831160309281877011080744449054430776685891910053204439985550630969257581891846367453263624519967982057597047905704566107036100825124459640540351548754200589830235597450313685502293649819488585843689906302267413039710304777530742851179565833856792487941710942576260304531355005296775332884499412234758064707902878996998166452134918361611702164129614739218960253005626096349 |
| Progress | 0.00% |
| Completed | no |
| Small factors | |
| Large cofactor | 45328286034831160309281877011080744449054430776685891910053204439985550630969257581891846367453263624519967982057597047905704566107036100825124459640540351548754200589830235597450313685502293649819488585843689906302267413039710304777530742851179565833856792487941710942576260304531355005296775332884499412234758064707902878996998166452134918361611702164129614739218960253005626096349 (composite) |
Factorization
Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>
45328286034831160309281877011080744449054430776685891910053204439985550630969257581891846367453263624519967982057597047905704566107036100825124459640540351548754200589830235597450313685502293649819488585843689906302267413039710304777530742851179565833856792487941710942576260304531355005296775332884499412234758064707902878996998166452134918361611702164129614739218960253005626096349 = [45328286034831160309281877011080744449054430776685891910053204439985550630969257581891846367453263624519967982057597047905704566107036100825124459640540351548754200589830235597450313685502293649819488585843689906302267413039710304777530742851179565833856792487941710942576260304531355005296775332884499412234758064707902878996998166452134918361611702164129614739218960253005626096349<383>]
Categories
- Lucas Sequence (index 1831)