Number Info

ID 22813
Size 1131 digits / 3756 bits
Value 414326419277932492018012455354016553821412611977145485288187633240437744916053868810140189283503660947613335748453774482703795213058344264760251875349518168057569299872772540049122758348071607361517637111804350743284373136532590372655263777443481492752729733443368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421
Progress 74.59%
Completed no
Small factors 32 × 7 × 11 × 31 × 59 × 61 × 127 × 251 × 349 × 421 × 523 × 929 × 1741 × 3001 × 8179 × 8527 × 10789 × 13921 × 143609 × 152381 × 200971 × 261451 × 346261 × 564979 × 1177459 × 466307299 × 26876632021<11> × 42516584771<11> × 67054458649<11> × 69532147589881<14> × 71353204641689<14> × 286934932103531<15> × 10940140435272203<17> × 60310248217276381<17> × 134223608855082547<18>
Large cofactor 36064025195368808965161769746306820494896747551557185437882779001921900092387350092371898864923450325773625955031539664612593669378055842058259054641616442817717867914038634034903278245969607447401582608391275247596268072350861694596598299598873695376180333103797700635079621914585301337582660803727255144237815426574696714371043877673340931485512456144708801381688100588251206119056494548946242214177581483452129873595195805766067255587751636230950023667425283359141633065269469941535914227892326567251675083764602322542867372137568860781116123591420570042486987892122918258897217862646186945555839919281714138992944124157119258934703432648581634571069537975782980902850699443943525710114488560441863977920154458038133077136069407413055554590297050177969056658663198152457271573323846295621201338358904072670288014825949089060018634909288109617911848873163917267368952901700423296547445961081384569748560899792409 (composite)

Factorization

Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>

414326419277932492018012455354016553821412611977145485288187633240437744916053868810140189283503660947613335748453774482703795213058344264760251875349518168057569299872772540049122758348071607361517637111804350743284373136532590372655263777443481492752729733443368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421 = 32 × 7 × 11 × 31 × 59 × 61 × 127 × 251 × 349 × 421 × 523 × 929 × 1741 × 3001 × 8179 × 8527 × 10789 × 13921 × 143609 × 152381 × 200971 × 261451 × 346261 × 564979 × 1177459 × 466307299 × 26876632021<11> × 42516584771<11> × 67054458649<11> × 69532147589881<14> × 71353204641689<14> × 286934932103531<15> × 10940140435272203<17> × 60310248217276381<17> × 134223608855082547<18> × 1197407098426779145291<22> × 2511778854830594606611<22> × 312853876283494435841671<24> × 692012806659357739574341<24> × 19840908591991639613963221<26> × 374751027121579773391551841<27> × 2097957102415029980636836147<28> × 12058479697803056289880300867<29> × 2094833682473220069431724501566853421<37> × 572054927334156496925012920235629192230281168555441<51> × 3605403851353821123741083595382953185544609831777342451<55> × 512005690496370962325576804550581385298881634723171002789387478967665040481<75> × 275237350188210195072284862579981234396868532708331534708262055043682150160128281356531921<90> × 2621589448292006177492026538021986915819336407498665060864148230126273855119178128099652378765836104270165192163055915555101<124> × [184464889198028945820661493150049029453215514426288710687389805830743734111438751327712327200202878732913667038673989908321293622329791559205295960570935026685212187396566993568942995679149621818801270607236751071179178876712897859992188260379579984323178094726755265371878125996695727261<288>]

Categories