Number Info

ID 22923
Size 1274 digits / 4232 bits
Value 53782644130619818082529622582887439254028160281208119013121273059360657296679452720099919912222604155670701725485608292890204644739869471278866103195885983537044363397418729809314700704184939444079922034379288899188703944895888717847952310391863084665455047595809847016888818397786112267530369347368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421
Progress 84.62%
Completed no
Small factors 3 × 73 × 11 × 29 × 41 × 61 × 71 × 197 × 251 × 2812 × 401 × 491 × 701 × 827 × 911 × 2801 × 3529 × 5881 × 7841 × 10529 × 13721 × 14561 × 17921 × 23311 × 26951 × 32719 × 140281 × 152381 × 164011 × 222361 × 5414011 × 7003781 × 12314191 × 31585261 × 269737651 × 1424354653 × 2488859795549<13> × 3688539810341<13> × 4443547135861<13> × 13295107990361<14> × 13428508670641<14> × 80827057177254851<17> × 608569597978252121<18> × 3456439948919462261<19>
Large cofactor 1176334245971928038614077573520906902929951971795165560935481094843791141426454096793518759669804742043310837838326603693648843485169709504772686619757685200067573415747973902838295715594502826501573704731447319142544453885948087150401595414374118865122144122009700799492579431738542865990791764021405911655223324671325483981395680152445700044116171086262195242995121377776336374798938860077744492778819308532700118137973927956662113421631833568826969754802131566411006351652490795854801934689977837074066629378405095500783142564237359472168502054079894554620383239088434453486785208171791763375316880938885078259256948008659207671644828613713275792869247345179192910932698532019993855984508779723934553067739572683186770607826331186322656008149315050489205350649094914944478916943778023401709706440735758420282304466907004257980525771363864777360082602638979603354404336465988919769686088176596957323771612249409098793770513487824934507989785444326244982228817133851261270986722673832875508750225974222908600313 (composite)

Factorization

Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>

53782644130619818082529622582887439254028160281208119013121273059360657296679452720099919912222604155670701725485608292890204644739869471278866103195885983537044363397418729809314700704184939444079922034379288899188703944895888717847952310391863084665455047595809847016888818397786112267530369347368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421 = 3 × 73 × 11 × 29 × 41 × 61 × 71 × 197 × 251 × 2812 × 401 × 491 × 701 × 827 × 911 × 2801 × 3529 × 5881 × 7841 × 10529 × 13721 × 14561 × 17921 × 23311 × 26951 × 32719 × 140281 × 152381 × 164011 × 222361 × 5414011 × 7003781 × 12314191 × 31585261 × 269737651 × 1424354653 × 2488859795549<13> × 3688539810341<13> × 4443547135861<13> × 13295107990361<14> × 13428508670641<14> × 80827057177254851<17> × 608569597978252121<18> × 3456439948919462261<19> × 3117271604979239730401<22> × 3951515322270922845411912871<28> × 158801586229862983170858567089<30> × 6551154092925933298930251891324599<34> × 31786497905371763489242755077389209545831<41> × 77977622722548466932760552227685032371891<41> × 628292358238289452269193508271835428805485714102857143<54> × 9094531444961429271893502102359397301142152534553291797831<58> × 5868970976675994117193657065956205629904710379447645616883364917958700241<73> × [7889046057784690491609958279907039696389975830836035479180751812048683256241541074145770458904864340037297851349635710187928203707770337408632629486960456875418997444287631141057203868076000757221<196>] × 139984046386112763245279623972364170678403711823947680515357499704503102746641723399193632348843956799017305058852365557778096017434849345249451174875930937414800003369043348614418935840606332176262234716363499137982170293860101131080342799358596881762904540624143604591616455837699044052259360454631414651723683003771702093304943239606751765933192895267792825886965760000000000000000000000000000000000000000000000000001638400000000000001<438>

Categories