Number Info

ID 22931
Size 1285 digits / 4266 bits
Value 1376835689743867342912758338121918444903120903198927846735904590319632826794993989634557949752898666385169964172431572297989238905340658464738972241814681178548335702973919483118456338027134449768446004080109795819230820989334751176907579146031694967435649218452732083632353750983324474048777455292631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421
Progress 19.22%
Completed no
Small factors 3 × 7 × 19 × 53 × 401 × 2081 × 2549 × 3121 × 142559 × 159563 × 502321 × 9690539 × 217948849 × 230065681 × 362478049 × 735408649 × 2622927733 × 75368484119<11> × 109850818001<12> × 173085398201<12> × 192696104561<12> × 2272727294381<13> × 41413929827219<14> × 4460872019481639529<19>
Large cofactor 21789839166385197487195944416479468378516796382906040037154658406403010571839727901911365645764696081113559543854986646567375299088621601186122443026702801858352034204729789118996274784379655168602135588919710459507483615401821986736753754858914142438171117969868838110379713133266889458701425252842835079476879781325331715134728424980268127156761276046876047140657249324424002771196934529164330651726116160638826178490082716643052640492327209919602744627177868616923952394208095432564774406313226361408071305474592918071202416940626979209860155775099239158847029782811864753685244054981189784401651574909602126246259314598149330873128247177875785302710170186437330364743439393179334161611670925785041485250018779431086156715710106947014395908878011040322797136732113088805067025602644609238512892836069770996807920674452358098541095483006447211366015309804062016843808145119441687697042752759868290304665261138629452705743591481188623227904531311493467107749600537594057609066846742605960877772879827102705319564693895552941449875629454518390156077304924121439323160622156330482647142197429541334205168555519273 (composite)

Factorization

Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>

1376835689743867342912758338121918444903120903198927846735904590319632826794993989634557949752898666385169964172431572297989238905340658464738972241814681178548335702973919483118456338027134449768446004080109795819230820989334751176907579146031694967435649218452732083632353750983324474048777455292631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421052631578947368421 = 3 × 7 × 19 × 53 × 401 × 2081 × 2549 × 3121 × 142559 × 159563 × 502321 × 9690539 × 217948849 × 230065681 × 362478049 × 735408649 × 2622927733 × 75368484119<11> × 109850818001<12> × 173085398201<12> × 192696104561<12> × 2272727294381<13> × 41413929827219<14> × 4460872019481639529<19> × 2217450176796190005281<22> × 628605693732325702045277<24> × 72098698642633148592794795053<29> × [2353881643573928108692218085404341129602188240642302178666027363933466642862988707386141992611644179812236850482030031624714269850645050648986056763517155772398767188417524786145379392739157805921850642854085183569517102631668417765917232951<241>] × [693004683115666192557083727425783596809640323665506482829002871285558632575128387239943606731004864175494165072369680537051828546748986068513672869397294305283766396005045382256509097114360815826699799398749955127397295224140572232703693976384446660746001829368451832066331167<276>] × [132914886933653572336302467564009802935263068687595200215759721231734208962178438649936837206905901918201364557315700621237665567381979404823813507415760095420761206740898299599645047075097452452608330313386474506842901486321054721628015708704536180982527683916413516301720362186061699849890686549952389317684924937536847255850363046910962002490067987382217758928995705475773130791355950696423937105994183958436457265548239912036339066728542420427378665608189781504032481534281222966427826314012381746984200211656125664329<522>]

Categories