Number Info

ID 40786
Size 1307 digits / 4341 bits
Value 30476807095527368121238137227918389378733936768799354443624517990172125185583540337567756299398953935256202985788475455273062793013775789373239778165891307186388982883609669493674838207868048437068844316538478742734665887784365412550721719313709498940370002897589015451130407267661025988418885130942367453668090604271552367387578617433862318223439352639406423100186814050141914986631666170819214853650507199773899361657743867713065331448916269383449858872975102809400907905230854952101429553860683549155022635180825947538805541020347226002405958580650107492327636175172320319582085431453531764967321577836607526387125084550535897350575532864296506342658220795335319029091337415945561408620999773423422609234328694478883393679948243185290254825164518256449724211563483677745861055987673979852558376027519876197878441839704580013685602702374579414318860671726111551717277545391105363511129917080433452439222564021149266240197293763069618978020412737999332875817870243242134226586526598063088944076297952776661504706709486843774003117842710782029710242479968684036830352155186731482161299850477082293586254050848917436199308725054745758944279493172948026417200050326027690061012499518338814495353886871091630319454540588332483283024549457384344129254533604409105484985356266225230595361390758723755859929760801
Progress 8.94%
Completed no
Small factors 23 × 89 × 881 × 2687 × 3191 × 12641 × 201961 × 202029703 × 361592639 × 2516276401 × 5435488351<10> × 16203007441<11> × 1113491139767<13> × 3860912461561<13>
Cofactor 11092469122730583340577693345118768243076843574242046541331425285928315715825695834494495922993325054275682953785558178193568989725434761441459653570649574619170154253631011306388817257858960071361314645677337135163932453072808955761612767310828880588278068824491227470994890940104423707361246762439419714998706140181906412719644803007471228282339328302531088444567106655025875277160385732393211525634331473189773771546040908212718628835385619420678868941688469008104235339078465921262959068432965996440953745387637235239351571763425263132882363669985958316720068748123771222793627823830877496499646833650206468017664023595825598803618970387517859349663733675358846527005069500980167399950128875174564442441337469997102604097928469367599755064459806775391671123656618200948801611475639416581642630699451279727848564468860492648972973350376096636502080460894023668065241941242559054131646642326920032765022880803172093066723555477589354578343448806587473717529185429004536622662548507521345616700540144019576578370251730481748921240229385253885065898016422882615630480992020384862631888473984101445539286447342959478264766353662563815580754255306564044318416269007884782922914692673188216697647115145941514520798711 (composite)

Factorization

Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>

30476807095527368121238137227918389378733936768799354443624517990172125185583540337567756299398953935256202985788475455273062793013775789373239778165891307186388982883609669493674838207868048437068844316538478742734665887784365412550721719313709498940370002897589015451130407267661025988418885130942367453668090604271552367387578617433862318223439352639406423100186814050141914986631666170819214853650507199773899361657743867713065331448916269383449858872975102809400907905230854952101429553860683549155022635180825947538805541020347226002405958580650107492327636175172320319582085431453531764967321577836607526387125084550535897350575532864296506342658220795335319029091337415945561408620999773423422609234328694478883393679948243185290254825164518256449724211563483677745861055987673979852558376027519876197878441839704580013685602702374579414318860671726111551717277545391105363511129917080433452439222564021149266240197293763069618978020412737999332875817870243242134226586526598063088944076297952776661504706709486843774003117842710782029710242479968684036830352155186731482161299850477082293586254050848917436199308725054745758944279493172948026417200050326027690061012499518338814495353886871091630319454540588332483283024549457384344129254533604409105484985356266225230595361390758723755859929760801 = 23 × 89 × 881 × 2687 × 3191 × 12641 × 201961 × 202029703 × 361592639 × 2516276401 × 5435488351<10> × 16203007441<11> × 1113491139767<13> × 3860912461561<13> × 239506881856626095535121<24> × [46313780367157762349166897927914117097018362340776089898576989329099573082269989445878794943355135071779089178514036420527033157873968648472846496640951996396975076338760006590559023832557554502657764880725567800881356475129115112953109305317853184798903363348038275948425757361461592068402243321678697489588108395306252935112352239747179397292356752997737728957992877217876702968154368089327782875094632657173692404554974455319249032902077066121345435021180669794257415718131544073990472179827880391507429509475686204045143132262335380803061156113375067493026718053522122038752703034623457677427310689445871786720437637947695924176112031440591165867788376359915179760884743787783970495281229710238857953964404637961766880916733129670833878690782152501985725125350659599885054483879619431240948550289253231653777909586734801939256131052825893296046541003954502096816985328282805645745316939399885460796709256737410170484444605779971915902596532864095264970306776391667968504229711970881961817862192387177632594477792883581648360112632134407662334833017505328636848418985443602493944675480761853068638324175123725555265464454390432184684339500376346303621678689005477883848758473388755558791<1190>]

Categories