Number Info

ID 42816
Size 1383 digits / 4595 bits
Value 867814827701230083139655588123732905835184502296911853845449808807507547549044202912431864692279298978926476952222430630544094183021591694708783548853341144317800858211959072914300334896471280705339808703220586213313996239467617771295788187274722720271447072176423045822063143993718452867314696884837483790062148115623575392133618726774901896125785222799109486293974915276735365205124374537364108012824467057840168490347940819167411792725194492186655775466422477064655211167983474874397668807208968982120782731608459147068167887482748904642756802564158045905515730611560127050091814764079218197115794610738813776550276109156786751070527063788642446702248328931366763949240510079067856499231315020937615214631255815224290480264557343432565236061514195730369686613939179220245863555142158607381495755672942480592034979619583002299892719646606102118098894654465775119741347841989671112082198786265744304497067899082506157016155395064022476272954219209913251401915386648979361929477899807379102032774743719919940104888632204985701544827890193194611404108479555848651336305780969098014647373022940633914943107303390159253165511411462033740473253793905491858110143194415451228144847172712957740770438763373542401408582952448621274149234359293620364547692424522028707768817514026176354325781734527935488137122755359756067322289750767118830895956447785532216000137838580524240318450730302495
Progress 7.44%
Completed no
Small factors 5 × 7 × 13 × 89 × 227 × 4973 × 23957 × 132437 × 860609 × 1336337 × 3071372093 × 1649659322992943<16>
Cofactor 1026812159586402783233237861616811748064053509511922516245734527593485599934405025044519220952025816617343380692511740043997498547766000604999071606952549109312437256258931613506212095969152063588127620501230132441882663557312159611160050909884750344209901365852676513485154460462710801019503210515218121307185867201947148732995687327978865189581672875024243769652857721408502060253841954450919703763972853795288140778043257959242474503872789845788667517633448207210423285108419688554518871031614377601439469738218692293090812128199778844555941401917598881864552659706116799056420674460525175848462844460992782015391851380245118414848191169069740722713182041410527309804708578531464715258146404842198516369108191276997196768555000249282431841036991603977430661367176169720108144633404440982891352891060706247772651914622818872276489254741222789895552525027210348365041701579781417646214509149066978063122078801937342911895329068202516403626575814981210496800798233443809735050153284557434196478307541606976460806946462716945496748088055253574875291348983314147152512813901719994311063713162934953728216743478114568338806261743866794979730417751527520984942338286219973770374324151484057906154452179178207332310637274043913276814099926892599505387123106013445550083489560829297726455901549079881549197962870871885514108685017077 (composite)

Factorization

Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>

867814827701230083139655588123732905835184502296911853845449808807507547549044202912431864692279298978926476952222430630544094183021591694708783548853341144317800858211959072914300334896471280705339808703220586213313996239467617771295788187274722720271447072176423045822063143993718452867314696884837483790062148115623575392133618726774901896125785222799109486293974915276735365205124374537364108012824467057840168490347940819167411792725194492186655775466422477064655211167983474874397668807208968982120782731608459147068167887482748904642756802564158045905515730611560127050091814764079218197115794610738813776550276109156786751070527063788642446702248328931366763949240510079067856499231315020937615214631255815224290480264557343432565236061514195730369686613939179220245863555142158607381495755672942480592034979619583002299892719646606102118098894654465775119741347841989671112082198786265744304497067899082506157016155395064022476272954219209913251401915386648979361929477899807379102032774743719919940104888632204985701544827890193194611404108479555848651336305780969098014647373022940633914943107303390159253165511411462033740473253793905491858110143194415451228144847172712957740770438763373542401408582952448621274149234359293620364547692424522028707768817514026176354325781734527935488137122755359756067322289750767118830895956447785532216000137838580524240318450730302495 = 5 × 7 × 13 × 89 × 227 × 4973 × 23957 × 132437 × 860609 × 1336337 × 3071372093 × 1649659322992943<16> × 1075273578995652878537<22> × 9555659573162869325347549<25> × [99933560025255339146187943450567196949125666587187325185410682863710350870024985738302865835363805369693432373935043525236141319235127195439783794845837592835238029030687371571686672528083402438008952562685186512483984355509291601358004175579039734750790053497551586243859876410927025673254438502337651287796886335089452213866808095508452110925358320260425751398844715770954377109026618241679865202452813962427456790468467522378872437045785875006699725234241062293796184925475953249378871621928598355705721738349149102801579644670816712004112552248406141270514381396268038791658054009514749704771745018860579097171418391729369575387383990014136929492415875925871160633635031204493243891553341273528000652872955298288462096770622092140597894201424809219623992162220594566632049759187293505052711885859382794292441130051885474260718078380076266009095443244229141442189337392823910509392814174355874088849601330918564897707620481951972779320289542900216555508182240715291563175034843812161368932650757221561110263752184394413280561179695407937299983432148388926004434898597566644036788648703478742857600549077260175584160883419010124591362380169755080131937414922573521352906382405604253539142728598298429256853980959412087970999796756336941487906218493800931012777829809690343684529<1280>]

Categories