Number Info
ID | 45481 |
Size | 1348 digits / 4476 bits |
Value | 1419699844984260318464507918508538218214973360483210991797683107742413784445085139567366131142855605694507441979082635856268346185256687117337785762129717631371597141595326011539842781364473513542595917095306859427479037111238232702148379067683850385174996463205613019066389201101914387764438957325231706605706047829722252612936105168702370911760289146968470293829196518683511307070545360257430546841660363643976096119689749326746348526619053140963160101033461751767845331002310602083755013990595823356042663382280105441477423997775637816568335643750336142044416506373821070650174757020613538610649090387097341730018321132310719740658496863717295946169037794048336508498923504682392458206550707765052624688976780304469784944027776237701549857101262029894538468582692236293825097391416934940140211022226708953200421050839066023319697748362497640509853125881920831791982270720993657705154795943020233855991697046906848311054760172051549222733387155628802955718544365374743977693379346194577666118941995882613013183205812710275581626317821240615232310228247306198685818877392453699434874975230870014035476220354298162629209962782339195912275301734112030550040803828623661907774431766164171702201498597704335359999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 |
Progress | 3.37% |
Completed | no |
Small factors | |
Large cofactor | 1419699844984260318464507918508538218214973360483210991797683107742413784445085139567366131142855605694507441979082635856268346185256687117337785762129717631371597141595326011539842781364473513542595917095306859427479037111238232702148379067683850385174996463205613019066389201101914387764438957325231706605706047829722252612936105168702370911760289146968470293829196518683511307070545360257430546841660363643976096119689749326746348526619053140963160101033461751767845331002310602083755013990595823356042663382280105441477423997775637816568335643750336142044416506373821070650174757020613538610649090387097341730018321132310719740658496863717295946169037794048336508498923504682392458206550707765052624688976780304469784944027776237701549857101262029894538468582692236293825097391416934940140211022226708953200421050839066023319697748362497640509853125881920831791982270720993657705154795943020233855991697046906848311054760172051549222733387155628802955718544365374743977693379346194577666118941995882613013183205812710275581626317821240615232310228247306198685818877392453699434874975230870014035476220354298162629209962782339195912275301734112030550040803828623661907774431766164171702201498597704335359999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 (composite) |
Factorization
Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>
1419699844984260318464507918508538218214973360483210991797683107742413784445085139567366131142855605694507441979082635856268346185256687117337785762129717631371597141595326011539842781364473513542595917095306859427479037111238232702148379067683850385174996463205613019066389201101914387764438957325231706605706047829722252612936105168702370911760289146968470293829196518683511307070545360257430546841660363643976096119689749326746348526619053140963160101033461751767845331002310602083755013990595823356042663382280105441477423997775637816568335643750336142044416506373821070650174757020613538610649090387097341730018321132310719740658496863717295946169037794048336508498923504682392458206550707765052624688976780304469784944027776237701549857101262029894538468582692236293825097391416934940140211022226708953200421050839066023319697748362497640509853125881920831791982270720993657705154795943020233855991697046906848311054760172051549222733387155628802955718544365374743977693379346194577666118941995882613013183205812710275581626317821240615232310228247306198685818877392453699434874975230870014035476220354298162629209962782339195912275301734112030550040803828623661907774431766164171702201498597704335359999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 = 53798531618356838437<20> × 50432889202269551981187329<26> × [523253647009156856176462126494116219543178504446037722305211566424991253932841042275620265831646378237603080667749710746263774061119282243066949268633544029086808008705787190538541647423853833633429653142895859908157806680036212098926147602970956601007021493141781697815180919701781736666488517463135201754277284705182294796108899283255131703613646519451576300250983331485764390469373609185194638668405040673611240376984623867765451050674329089187379745190654056008093296595982960798600510689582419839999216534693031370695123850038138178534884057878234843072695130689553198629144279280560159168858143535999461881429433870096128765733862425192412766103436525675901231072850301518048086393148247647490451615331851665509496283700864613516927465800685437466337945187041536728339855155130060371390304756907449516159086676884754763413858987518239972998294297893675728726867192787881860418323325154141230666868352464310489873482589456577016175713944062807739743802485647068613696951159155708242728848114569990083431013739431260817026762039170353924858128857396097784141651958159907233128400198562038245066710742540228856892964649233142340633867946234419904837239981700859792587291340294789899378546605180147485293480877045170010195885148474943841356469070020322061628634646376263983368874238074915687333454163<1302>]
Categories
- n! - 1 (index 578)