Number Info

ID 45489
Size 1370 digits / 4549 bits
Value 18816424109733753481980831314687782948461908677439853150584586618165282985805349553136258641917948833868630470195908641756519597778272879972237744113452678104030160860405610052089443152528586122512567821696769409849110468676667461209461838250891988099509032156399310807674851509997216122244149042745817914283929859409055854493142155727658265082635270371612491245918594183840768062326983378644124603586272424825130347840885845539288444791225903548982604568198810060953708762907766402754419114560989439143450632580762610585496729807184934197011808001694715901462760052394820233297856153832919326320799402576462559227269026219081698433814027084405178164069329798552945596405191349950534649475757140962001579957366398433425850672814129938594291671409767645768107467119550113999403266816236555517376532934397888412244900898254384577386583757482583165601458663075927856288828976936167561213747622777681985761242856220286060603711208643435487491740051952595506346143942967445430402735572389447225240946379817395536248908605925866066602922578452993789512530804531221410468911340878715252762666009595466700244099815903818348227849735406422938105998553939893964017452192389587935535675513502525759940419245945451914955555368912749068287999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
Progress 0.98%
Completed no
Small factors 22413264518063<14>
Large cofactor 839521797218315576422452742560951755135153878384541825458964606646211902597001162259367735031502860102980282419625922873074404352026895241502010354903983980709258047476943037035654537274280514368053742937206431984700429860943442515089242626875482530902947725472983466663517541215564505352060936173378100462973665917624919253644788747711090721868286463246156438313716881295007250527707260687623097197007442630928881939461226233545778899574780785992301087189680714429016175585508626962992239962565944318357639528961457969403159209844494959205549711581053775596775994134645377126734782735139227298905054186833897643535520364911572523601650825589844768103279366212066537853806770392471072470346841216732466038560686435432204513965478781675728158118202278194638702277831559733519934293804723643375636323040035935379816349264461759268606810927240801527270071037123956804474374769322288136807520036294924880114970673315765551761035768884800266305423948498025959780383623096598044374201799738544027456110155192065774964388691914304302297173169066913503817132301801576013234014766196563826784691591546372730576471145977666480402939329561057247869322064692111207759074437542811934885241796111121491350091301835804229700463183828915319252057306884059163525832630460095859574551868091543273701269792587954500625456762677403574823206107614017051294246315723978039837873 (composite)

Factorization

Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>

18816424109733753481980831314687782948461908677439853150584586618165282985805349553136258641917948833868630470195908641756519597778272879972237744113452678104030160860405610052089443152528586122512567821696769409849110468676667461209461838250891988099509032156399310807674851509997216122244149042745817914283929859409055854493142155727658265082635270371612491245918594183840768062326983378644124603586272424825130347840885845539288444791225903548982604568198810060953708762907766402754419114560989439143450632580762610585496729807184934197011808001694715901462760052394820233297856153832919326320799402576462559227269026219081698433814027084405178164069329798552945596405191349950534649475757140962001579957366398433425850672814129938594291671409767645768107467119550113999403266816236555517376532934397888412244900898254384577386583757482583165601458663075927856288828976936167561213747622777681985761242856220286060603711208643435487491740051952595506346143942967445430402735572389447225240946379817395536248908605925866066602922578452993789512530804531221410468911340878715252762666009595466700244099815903818348227849735406422938105998553939893964017452192389587935535675513502525759940419245945451914955555368912749068287999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 = 22413264518063<14> × [839521797218315576422452742560951755135153878384541825458964606646211902597001162259367735031502860102980282419625922873074404352026895241502010354903983980709258047476943037035654537274280514368053742937206431984700429860943442515089242626875482530902947725472983466663517541215564505352060936173378100462973665917624919253644788747711090721868286463246156438313716881295007250527707260687623097197007442630928881939461226233545778899574780785992301087189680714429016175585508626962992239962565944318357639528961457969403159209844494959205549711581053775596775994134645377126734782735139227298905054186833897643535520364911572523601650825589844768103279366212066537853806770392471072470346841216732466038560686435432204513965478781675728158118202278194638702277831559733519934293804723643375636323040035935379816349264461759268606810927240801527270071037123956804474374769322288136807520036294924880114970673315765551761035768884800266305423948498025959780383623096598044374201799738544027456110155192065774964388691914304302297173169066913503817132301801576013234014766196563826784691591546372730576471145977666480402939329561057247869322064692111207759074437542811934885241796111121491350091301835804229700463183828915319252057306884059163525832630460095859574551868091543273701269792587954500625456762677403574823206107614017051294246315723978039837873<1356>]

Categories