Number Info
ID | 57331 |
Size | 1245 digits / 4135 bits |
Value | 357874626622101332155999753290965574494984919660867014411587691653105529531087093213965642688151668003266670176144023973428939432585585073987327176940903278837371158813504383034939610235873182573016591301175643871855366827229889917860723298853514511138933404139800591600638869012561784970437847142960473777370429162451046160538385523043364902408028329099022824605738898422682862182175003072658841600487114526251386427423540561805775925158952687160559487246135631707611897261036321481331729468397705505369129508176852782180161736763562132685327361749444453147322684478906155172981172457770546752561601240807990166265173239619380122807337881410445629630443458720219022056223760864792034930551294200393472189160071245137535387617331941371613376456426050751910328315127356495247247547506593874164884666288990676184405676980156306737010728958166333721605013261235007199505150082968653871845238066546743662246886276235412971780614173011456664833940027551706668077947514781103340123531439754555267704634516787828366309894697747193862969217137852490298326547276556173462346810703678816185493749759999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 |
Progress | 2.21% |
Completed | no |
Small factors | |
Large cofactor | 357874626622101332155999753290965574494984919660867014411587691653105529531087093213965642688151668003266670176144023973428939432585585073987327176940903278837371158813504383034939610235873182573016591301175643871855366827229889917860723298853514511138933404139800591600638869012561784970437847142960473777370429162451046160538385523043364902408028329099022824605738898422682862182175003072658841600487114526251386427423540561805775925158952687160559487246135631707611897261036321481331729468397705505369129508176852782180161736763562132685327361749444453147322684478906155172981172457770546752561601240807990166265173239619380122807337881410445629630443458720219022056223760864792034930551294200393472189160071245137535387617331941371613376456426050751910328315127356495247247547506593874164884666288990676184405676980156306737010728958166333721605013261235007199505150082968653871845238066546743662246886276235412971780614173011456664833940027551706668077947514781103340123531439754555267704634516787828366309894697747193862969217137852490298326547276556173462346810703678816185493749759999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 (composite) |
Factorization
Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>
357874626622101332155999753290965574494984919660867014411587691653105529531087093213965642688151668003266670176144023973428939432585585073987327176940903278837371158813504383034939610235873182573016591301175643871855366827229889917860723298853514511138933404139800591600638869012561784970437847142960473777370429162451046160538385523043364902408028329099022824605738898422682862182175003072658841600487114526251386427423540561805775925158952687160559487246135631707611897261036321481331729468397705505369129508176852782180161736763562132685327361749444453147322684478906155172981172457770546752561601240807990166265173239619380122807337881410445629630443458720219022056223760864792034930551294200393472189160071245137535387617331941371613376456426050751910328315127356495247247547506593874164884666288990676184405676980156306737010728958166333721605013261235007199505150082968653871845238066546743662246886276235412971780614173011456664833940027551706668077947514781103340123531439754555267704634516787828366309894697747193862969217137852490298326547276556173462346810703678816185493749759999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 = 3335487219087009988333591937<28> × [107293058889327365866235084055744680585355449111843147444756133131904644401541287615811224382925456156038246436126091292265627052923808190696061430253581965349746298716704431410764159193077011301837164182319719645145774714052452608729119022227932687640635604784435247611217671471439232940625233193939698807825399364606440444954289535044848810349408546840024936885086006620939063338476725028809908001450185573319992920379296660476940178060025029382283184916534639719542776673616331229549910305502643820679896275861680087767263306981153028666258411687279558247745083104700551505429877820966904555497019809467109888825301142858465622759668454607634065878501448603326870829682758912389654265245352358330307005833102147186118790493665107833683650674759069061613738097600828799985684300426164982052178464145677216819482414322744922730581611973179165853127494368548843828454972487688045902029996972210883643578333266242475765301963145092440491519198726697296877717485523931663603593690023396851164710739538236566690882662273379099961262127499484480749361814455531264484900426071507464843396168839208555145414442694600991552528554136234255773000540889761552087098450156758621735909061957755009189148469559514686374982456352127<1218>]
Categories
- n!/n# - 1 (index 519)