Number Info
ID | 57368 |
Size | 1349 digits / 4481 bits |
Value | 67843938653867755026823180200752045052903177431497294694351183434251744356899001349241129879332837757555782808531317446497299526849645260158599480847634369876041410196381875236880499798408219829183402802691760517155575583590598490005745823574427720224881058940469328600504916264064754330481317396071581625642810744154761348180688900649837590420354587423182842398246022959904319848303479643523340860345987340396713928114582502609585087683755421819781142832432170889391004875517919641842652648284513630815628285848893699071057047709826647579664776766536451419389072514135780654701585983219529183263436943231703533727277692096670792848812565992085968464677522504831447068084058476994779331497718440382607283141185049678194094240726622178165621853711630176764316338354252797499204128876040712535891803711607669116114516393516425504527204337260324099086681025281332915253287340865984449774062077687314877220593157261650250064888078773755457907251503610103032100572439068684135795476063668951428019658888478336026097568763301880206758628524958021708618952642183519943148607473798129455792080946002615011526543143437686066525402367737292295393448888765799993165134875152348652631620583423999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 |
Progress | 2.04% |
Completed | no |
Small factors | |
Large cofactor | 67843938653867755026823180200752045052903177431497294694351183434251744356899001349241129879332837757555782808531317446497299526849645260158599480847634369876041410196381875236880499798408219829183402802691760517155575583590598490005745823574427720224881058940469328600504916264064754330481317396071581625642810744154761348180688900649837590420354587423182842398246022959904319848303479643523340860345987340396713928114582502609585087683755421819781142832432170889391004875517919641842652648284513630815628285848893699071057047709826647579664776766536451419389072514135780654701585983219529183263436943231703533727277692096670792848812565992085968464677522504831447068084058476994779331497718440382607283141185049678194094240726622178165621853711630176764316338354252797499204128876040712535891803711607669116114516393516425504527204337260324099086681025281332915253287340865984449774062077687314877220593157261650250064888078773755457907251503610103032100572439068684135795476063668951428019658888478336026097568763301880206758628524958021708618952642183519943148607473798129455792080946002615011526543143437686066525402367737292295393448888765799993165134875152348652631620583423999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 (composite) |
Factorization
Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>
67843938653867755026823180200752045052903177431497294694351183434251744356899001349241129879332837757555782808531317446497299526849645260158599480847634369876041410196381875236880499798408219829183402802691760517155575583590598490005745823574427720224881058940469328600504916264064754330481317396071581625642810744154761348180688900649837590420354587423182842398246022959904319848303479643523340860345987340396713928114582502609585087683755421819781142832432170889391004875517919641842652648284513630815628285848893699071057047709826647579664776766536451419389072514135780654701585983219529183263436943231703533727277692096670792848812565992085968464677522504831447068084058476994779331497718440382607283141185049678194094240726622178165621853711630176764316338354252797499204128876040712535891803711607669116114516393516425504527204337260324099086681025281332915253287340865984449774062077687314877220593157261650250064888078773755457907251503610103032100572439068684135795476063668951428019658888478336026097568763301880206758628524958021708618952642183519943148607473798129455792080946002615011526543143437686066525402367737292295393448888765799993165134875152348652631620583423999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 = 2901877447191586402553856733<28> × [23379325932432664196274831133292237278510847648200218223111443708662615832649677449511624343250545241501550274427490929140840205998627468030803912147360856915127143782105953147799273729033642297345974876606472579083210096844260969796968628024634783876730751445914665290170215525858295853772289214989056650234852967799063592236548747871191033541510164664484889133071506372324967764429329437497004603794389781115209368461531678299125979803070306602725846371080942208534550887692279244073477136215429097413776712664463934328771620935097776298800919146128450196219020966647366276494576984968029822262767295783837883819411157993790585738776742827325034282082048830050839720165255006019281064478610864253595019693415261804545428147172921544296360479461753554274046873398225908271489704278306812783180236812968148522874253058013604627861795085321898949472541523312809178565973116549424808308477001026177865717205494434119422586552799907111034611651407477858264827472056632268683576617971334366755598970006410603592172853501112599494381211743691073220277728679508216767798810814055256981491566853538301754295386774336832140254616040682969942629935476500196741963959699243685516957366542862090042411239792395444156527127514824820194903791044669213405665290029087597462726016572637177145245427990771077148210863397414397081592830603<1322>]
Categories
- n!/n# - 1 (index 556)