Number Info

ID 57384
Size 1395 digits / 4632 bits
Value 178241102848366268733527984820697649062194724242680860774062565114578995443708235695522471952354763287667602900785845348489536239255774645091096627772061163174645053344106650350151234123605112099048304992280323374416497146048697703195051833096356656787885066887131851371229107466853222158411983954006964555949289768842164889283306714706772326750996179580156944489812831474664802688262173443926379778792008597649805624155388606987356470184853762285454368857385444835907042085725575307676150234604840555707365813107956005712985466020751242335317149329272073502108053148520983918265229207395958666142331874310987434711576211791663219655906870628901513956951726915580103168822466195292128370495024156213513171998417056802105214202755553944586074423189807615286703078133373491714409427732567247708826812621608810153901188297459096197948311914425110718371254669851944974503321415049669955603978006082238549392247224767239313776637399046771075891040408649370960674543823823738714250043096149942312277739960472450898656121967768881262729022438464280094195891721543700551118652558647207505739703006930341562344447739656768309288314646543199403758465017525938887848768137213184788059369861818753232905035258871749865931729218742255615999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
Progress 2.57%
Completed no
Small factors 1609 × 1331383
Large cofactor 83204882047040723703710087085585644127887808838314008626900181482187274894886477028731112646500407106760611209957485891335999327448687334843618308043076879805365870716128355946329496325133575510658531954197881466224958506804444283782435183928104690070710938743452384931572536285649420152229468537331212067594177501618817142900376678273328428662598082769510012123471409921704864415779451798926701557933205795059728103371797186602270745391516482197411190903172349740493585403667724274283272291568500784610024771055780428455495245537136252611299510239867539722026118914510402663714447690302413721181378325740906395873249835378643812132362027703117910034720437840454280108307264018167307776915735149240349879274294299095746809955813310580361900328308312979506252764145626680925228207143233964849155886779730498652301971192572203572790539346400254018662405644788523319183389736579725478031544715719481077437124583801879434277653123299442684222816973064346902957414611341325002132283741431502817762409105220300630541041419726799189714112197572381269593906311913173874724152330568217111602854287786747928651551031873225096969097442191831827810261693445881727254513013683847832783175744679800063483678926709778973723831261372533339394529988890410417384330981105943981211718186582270948339939062520009409767866971651440696152380175643252185779870699152942336819590562745749570790640448097306417 (composite)

Factorization

Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>

178241102848366268733527984820697649062194724242680860774062565114578995443708235695522471952354763287667602900785845348489536239255774645091096627772061163174645053344106650350151234123605112099048304992280323374416497146048697703195051833096356656787885066887131851371229107466853222158411983954006964555949289768842164889283306714706772326750996179580156944489812831474664802688262173443926379778792008597649805624155388606987356470184853762285454368857385444835907042085725575307676150234604840555707365813107956005712985466020751242335317149329272073502108053148520983918265229207395958666142331874310987434711576211791663219655906870628901513956951726915580103168822466195292128370495024156213513171998417056802105214202755553944586074423189807615286703078133373491714409427732567247708826812621608810153901188297459096197948311914425110718371254669851944974503321415049669955603978006082238549392247224767239313776637399046771075891040408649370960674543823823738714250043096149942312277739960472450898656121967768881262729022438464280094195891721543700551118652558647207505739703006930341562344447739656768309288314646543199403758465017525938887848768137213184788059369861818753232905035258871749865931729218742255615999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 = 1609 × 1331383 × 272363475542189582222718661<27> × [305492070408508724147271905050125379107892036538788580655972997992737176172864811181481178147556847355218660752758251578566127752436366591049555934273441589964797662482880268110431433870396160145671172048626157587924776128556653786412179151693031534991433942148228853936987468176524537924737888665573722879702873389044634488316962788969473341200801705139050987368271077128562977570193222664555118059052051878604782540169027709173323210337914216193707474713952930845565217094005934126795295229988205612085369855802065230319279160319104861638318433198667573691623212121485185872855796183722044643149631441436061799705211101415738952113193980235781121038980453122300730510490735733995173970408790931408368276609412818758514774150118268438720640737612935893468467885166893723962180632347577193520411811589566592670651268146343689214622758148024121013352436598875004341760699234298841806131333497937801719467846489767297260791589406202807433873495741874747484692704707342607700628308375600350622991318133895901790839833449885248021335687002438946738706124815140983527501586655098206399628913296187314105353247300054124284761145187295094397807333712081710329250907964392867374481489282894590850915226796907677730336524173999717302184730361783479682160472643798520689371720299278490241525788509469702143078824762508080878838575046687628584288125281557047248316118397<1359>]

Categories