Number Info
ID | 57401 |
Size | 1443 digits / 4793 bits |
Value | 507024057860399019320173580894914635198949797589245302607760997614675730644900190972556997287888573190717081017278343132421010680549648888418933375476302434334997455508601490405925525419696449342340615988107057101777166834586030476575323172298676830193483430922760045368564257960369248610224462897282352015744418708070110513524982314541165067039287266781901688548309237850414093600762043769124400645579099012078422018035698617043765121642705227026379712863483567351158883438497922550873316043981240968925701614479690509418362335506329869466373865291413600501678269185160323852832415976729461330884141014616826124334629073323294837990451697554038258115952942011591388000203325955586663359258523094185113453870658019685437068755207397522701582400916788817080382641668119129931802222882928476901260834489732829103960365732412685308302541183381171697506747591572589553240085205117013217906248477851966558744257007681413047236192921069128610057991104249839388777605658384138344977175063618178602480028257331716260061676919674213280910951878194804892150521795949467318268550320125610479261819910458913659658269492151867747841734107576883304006439465224596097166666087620621620513575028001819697203205611138816078621109661454995876332885740642071225963312746256681103733555199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 |
Progress | 2.13% |
Completed | no |
Small factors | 383 × 14389 |
Large cofactor | 92002404988507325333950811514328492373317120434006703809637184340060270627548239720499612372137436214369056036110835161182744702636687201116412246204954291188674089688217644208909497594477441035941586504941321237335012191933319834827286504631325900459116203852914195836165873365400653024625981316465154429822537906199036672292092562464974979443661773613674227238842921939466395692960633688507049761790238121062238400859174339740551941356912151494166056436620802653165192267464598002294927577216429828073574046623534134524062991893526489804162823336620754231806075605905135296605202657297043402730607242335506529834788046737053605459503297241317799899719041618423594176542845402391016955630365866256827216952364071932203263908117982771997390376881090232490184179652051280456985694737245520067686756381340189897737077901365524053731671147723841790500820922200068618060627834019026576891988400236104087842024851026034546486172607750504330722970514038563217220001727165050170682161845712606217811805445618310524060694920832550191265367143525253260831593650275253292789213678080824810376402613626000870562436364330358200417045822749515341626906299220919246800376427601919877603335850366153957032234990055105569768375367507670745064883248797732824621671716201958216147770843952272070320615889676386462170932357488776511358128770762841574476586498933857038675649207664616156779175853617509894325644390015799347739343242871013849243338806642077 (composite) |
Factorization
Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>
507024057860399019320173580894914635198949797589245302607760997614675730644900190972556997287888573190717081017278343132421010680549648888418933375476302434334997455508601490405925525419696449342340615988107057101777166834586030476575323172298676830193483430922760045368564257960369248610224462897282352015744418708070110513524982314541165067039287266781901688548309237850414093600762043769124400645579099012078422018035698617043765121642705227026379712863483567351158883438497922550873316043981240968925701614479690509418362335506329869466373865291413600501678269185160323852832415976729461330884141014616826124334629073323294837990451697554038258115952942011591388000203325955586663359258523094185113453870658019685437068755207397522701582400916788817080382641668119129931802222882928476901260834489732829103960365732412685308302541183381171697506747591572589553240085205117013217906248477851966558744257007681413047236192921069128610057991104249839388777605658384138344977175063618178602480028257331716260061676919674213280910951878194804892150521795949467318268550320125610479261819910458913659658269492151867747841734107576883304006439465224596097166666087620621620513575028001819697203205611138816078621109661454995876332885740642071225963312746256681103733555199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 = 383 × 14389 × 850579222702626060286261<24> × [108164416121263055931436818448845822892297542229110345301312542971702369158579425917741196886171938378145905060773895239978830814556872395815643684985739321933120224777340108986809591819677284130507957930024947077572145749056890700827411772101280223984145286146587898623146500931727913551618743776994479188492868145667069659532991046417739807752222036348995586547272295888586416804101342116444146632401716329581507529265405142203360459176348340062110532799917456169577815626413543669588994943709552626498080644066445217735905553426274943492379008153680199005620637680577319981683790096306332775924644740710540672013564100170166996964591568336291539475542015158552614302422513103756263864406929944138513112559088983550833965812667514394823572071870930388573358505257067011892426916045573462547262496540360673430108685899784871504199440109017380430240902961924661004404340049674111481067277210462210984793337599713726437384728707258951419907280845462564354816902798667998265629925726303149967057738274187628904056542198400843480132782225600197359810189992445970017039573539809088549511175589018278585707946412055725076246751727167838896160223040019569009900506038482073905439626554240446312136508982432768243107308121076903066774507642440915706468532802158054042304491146460461536614037950655231331619456877318273982111650043989924780429042643040290301441040180814020907568465324415193020273094634575257907562893257<1413>]
Categories
- n!/n# - 1 (index 589)