Number Info
ID | 57741 |
Size | 2449 digits / 8135 bits |
Value | 5210076159415952016736657793444904453771824758143188727658283627923965195034129153655903995323097792078516983639576782691278124261122179165668641157632117832728929185058009724418110089352395243735142066258390450323906067030922248117168037869804284589789470520791779388321579210105662186054964591075788136830929745378921461731694273707945201820975120332942577934934137389277000653977862558965314809010256390306638309646833836089515125544629595806427008772065242565102373129813717984281534733373784724318626094388056908376603354007397191667215325237000423922139159486164311778015731979493441131651666870101128604699763625333559864542357722107017153792410692513261170872456019566898145547871870830939880666350220675232087724768940101116047012858938848772224984249333131102723705309820764805598928227197461351025891454073794834279944208447364810888511842155108142524374717083110085991026491203631930798407096236260308078867229143330082497838603291610385459012565952126247060801121666729327360880588856406200316374923564269072609862195035713446461105779010591746796654284253436890385528306436828881863752898655150727428054170939375172091655708181996911152570315324098229948042628485593436647873448422482334836073893572279947109387163953073513360057270007254369436654776303391332334215804993824213468799248934877803806496048963366496052017822871502715040821691539054612017072700822251888036693365888652390313801899615342059519907604783005353646699664746177259640534734130114902878224053331986196315496219128226111534574754314781420450606237218865128511335900414952254634318087246294605914145374567992372544730822253565677884528896404059844453494928481659787643909431482528777237537454621389669542720189907730604644228137389846623114485650890869652676217513849306044511411418062749101685599589227012853807755358699081945680551105122995103279175312477072688893722961526956080598618987736998607353412442516929076298842474282838011195411602040529676377615472243614449028875664941684339456344020875971606910217093298306469507451871659449937844294454246472140359603884358403246169572927122973961843879806759680616918326226013375377657945819992914202139148335912827249488799452087137075199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 |
Progress | 0.00% |
Completed | no |
Small factors | |
Large cofactor | 5210076159415952016736657793444904453771824758143188727658283627923965195034129153655903995323097792078516983639576782691278124261122179165668641157632117832728929185058009724418110089352395243735142066258390450323906067030922248117168037869804284589789470520791779388321579210105662186054964591075788136830929745378921461731694273707945201820975120332942577934934137389277000653977862558965314809010256390306638309646833836089515125544629595806427008772065242565102373129813717984281534733373784724318626094388056908376603354007397191667215325237000423922139159486164311778015731979493441131651666870101128604699763625333559864542357722107017153792410692513261170872456019566898145547871870830939880666350220675232087724768940101116047012858938848772224984249333131102723705309820764805598928227197461351025891454073794834279944208447364810888511842155108142524374717083110085991026491203631930798407096236260308078867229143330082497838603291610385459012565952126247060801121666729327360880588856406200316374923564269072609862195035713446461105779010591746796654284253436890385528306436828881863752898655150727428054170939375172091655708181996911152570315324098229948042628485593436647873448422482334836073893572279947109387163953073513360057270007254369436654776303391332334215804993824213468799248934877803806496048963366496052017822871502715040821691539054612017072700822251888036693365888652390313801899615342059519907604783005353646699664746177259640534734130114902878224053331986196315496219128226111534574754314781420450606237218865128511335900414952254634318087246294605914145374567992372544730822253565677884528896404059844453494928481659787643909431482528777237537454621389669542720189907730604644228137389846623114485650890869652676217513849306044511411418062749101685599589227012853807755358699081945680551105122995103279175312477072688893722961526956080598618987736998607353412442516929076298842474282838011195411602040529676377615472243614449028875664941684339456344020875971606910217093298306469507451871659449937844294454246472140359603884358403246169572927122973961843879806759680616918326226013375377657945819992914202139148335912827249488799452087137075199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 (composite) |
Factorization
Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>
5210076159415952016736657793444904453771824758143188727658283627923965195034129153655903995323097792078516983639576782691278124261122179165668641157632117832728929185058009724418110089352395243735142066258390450323906067030922248117168037869804284589789470520791779388321579210105662186054964591075788136830929745378921461731694273707945201820975120332942577934934137389277000653977862558965314809010256390306638309646833836089515125544629595806427008772065242565102373129813717984281534733373784724318626094388056908376603354007397191667215325237000423922139159486164311778015731979493441131651666870101128604699763625333559864542357722107017153792410692513261170872456019566898145547871870830939880666350220675232087724768940101116047012858938848772224984249333131102723705309820764805598928227197461351025891454073794834279944208447364810888511842155108142524374717083110085991026491203631930798407096236260308078867229143330082497838603291610385459012565952126247060801121666729327360880588856406200316374923564269072609862195035713446461105779010591746796654284253436890385528306436828881863752898655150727428054170939375172091655708181996911152570315324098229948042628485593436647873448422482334836073893572279947109387163953073513360057270007254369436654776303391332334215804993824213468799248934877803806496048963366496052017822871502715040821691539054612017072700822251888036693365888652390313801899615342059519907604783005353646699664746177259640534734130114902878224053331986196315496219128226111534574754314781420450606237218865128511335900414952254634318087246294605914145374567992372544730822253565677884528896404059844453494928481659787643909431482528777237537454621389669542720189907730604644228137389846623114485650890869652676217513849306044511411418062749101685599589227012853807755358699081945680551105122995103279175312477072688893722961526956080598618987736998607353412442516929076298842474282838011195411602040529676377615472243614449028875664941684339456344020875971606910217093298306469507451871659449937844294454246472140359603884358403246169572927122973961843879806759680616918326226013375377657945819992914202139148335912827249488799452087137075199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 = [5210076159415952016736657793444904453771824758143188727658283627923965195034129153655903995323097792078516983639576782691278124261122179165668641157632117832728929185058009724418110089352395243735142066258390450323906067030922248117168037869804284589789470520791779388321579210105662186054964591075788136830929745378921461731694273707945201820975120332942577934934137389277000653977862558965314809010256390306638309646833836089515125544629595806427008772065242565102373129813717984281534733373784724318626094388056908376603354007397191667215325237000423922139159486164311778015731979493441131651666870101128604699763625333559864542357722107017153792410692513261170872456019566898145547871870830939880666350220675232087724768940101116047012858938848772224984249333131102723705309820764805598928227197461351025891454073794834279944208447364810888511842155108142524374717083110085991026491203631930798407096236260308078867229143330082497838603291610385459012565952126247060801121666729327360880588856406200316374923564269072609862195035713446461105779010591746796654284253436890385528306436828881863752898655150727428054170939375172091655708181996911152570315324098229948042628485593436647873448422482334836073893572279947109387163953073513360057270007254369436654776303391332334215804993824213468799248934877803806496048963366496052017822871502715040821691539054612017072700822251888036693365888652390313801899615342059519907604783005353646699664746177259640534734130114902878224053331986196315496219128226111534574754314781420450606237218865128511335900414952254634318087246294605914145374567992372544730822253565677884528896404059844453494928481659787643909431482528777237537454621389669542720189907730604644228137389846623114485650890869652676217513849306044511411418062749101685599589227012853807755358699081945680551105122995103279175312477072688893722961526956080598618987736998607353412442516929076298842474282838011195411602040529676377615472243614449028875664941684339456344020875971606910217093298306469507451871659449937844294454246472140359603884358403246169572927122973961843879806759680616918326226013375377657945819992914202139148335912827249488799452087137075199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999<2449>]
Categories
- n!/n# - 1 (index 929)