Number Info

ID 58339
Size 1276 digits / 4237 bits
Value 2740701878717069786761561763917071985114718065383084223184014042807578196305013187098586709808804451447395896698650756157547758039461272650002409747645597963729564404753354641032095856626034336291452861171069150188204386405397527659302318566744775718924285583379392156857720646900861449356962252833587105192719289599291781049124463921934375650486198191559167731850282919431668500671085656998677803969857014254110258023606506156055838501498225658578616352027494401982800215069150354587724231864493492088259852159713448611717226584727790557919245008840940708112278727911238981643862041301544754275915709641482509104035699812426901972797535363998743916343905249305531602203875293481070807479861273766716268017397133991304461287635226290154282251330792197284299517823574717791527605218241624377364723669233285142811814455862960713365194931999243676680836828544384412576956502509854416748528108285253485478814486976604633100660035348792706969963923100288570622106673210859469799785299776492073425034159496677043106342290784533088296090311192323778013188036632833562326663606103100413744260468615195081428679123599204810752000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001
Progress 0.00%
Completed no
Small factors
Large cofactor 2740701878717069786761561763917071985114718065383084223184014042807578196305013187098586709808804451447395896698650756157547758039461272650002409747645597963729564404753354641032095856626034336291452861171069150188204386405397527659302318566744775718924285583379392156857720646900861449356962252833587105192719289599291781049124463921934375650486198191559167731850282919431668500671085656998677803969857014254110258023606506156055838501498225658578616352027494401982800215069150354587724231864493492088259852159713448611717226584727790557919245008840940708112278727911238981643862041301544754275915709641482509104035699812426901972797535363998743916343905249305531602203875293481070807479861273766716268017397133991304461287635226290154282251330792197284299517823574717791527605218241624377364723669233285142811814455862960713365194931999243676680836828544384412576956502509854416748528108285253485478814486976604633100660035348792706969963923100288570622106673210859469799785299776492073425034159496677043106342290784533088296090311192323778013188036632833562326663606103100413744260468615195081428679123599204810752000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (composite)

Factorization

Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>

2740701878717069786761561763917071985114718065383084223184014042807578196305013187098586709808804451447395896698650756157547758039461272650002409747645597963729564404753354641032095856626034336291452861171069150188204386405397527659302318566744775718924285583379392156857720646900861449356962252833587105192719289599291781049124463921934375650486198191559167731850282919431668500671085656998677803969857014254110258023606506156055838501498225658578616352027494401982800215069150354587724231864493492088259852159713448611717226584727790557919245008840940708112278727911238981643862041301544754275915709641482509104035699812426901972797535363998743916343905249305531602203875293481070807479861273766716268017397133991304461287635226290154282251330792197284299517823574717791527605218241624377364723669233285142811814455862960713365194931999243676680836828544384412576956502509854416748528108285253485478814486976604633100660035348792706969963923100288570622106673210859469799785299776492073425034159496677043106342290784533088296090311192323778013188036632833562326663606103100413744260468615195081428679123599204810752000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 = [2740701878717069786761561763917071985114718065383084223184014042807578196305013187098586709808804451447395896698650756157547758039461272650002409747645597963729564404753354641032095856626034336291452861171069150188204386405397527659302318566744775718924285583379392156857720646900861449356962252833587105192719289599291781049124463921934375650486198191559167731850282919431668500671085656998677803969857014254110258023606506156055838501498225658578616352027494401982800215069150354587724231864493492088259852159713448611717226584727790557919245008840940708112278727911238981643862041301544754275915709641482509104035699812426901972797535363998743916343905249305531602203875293481070807479861273766716268017397133991304461287635226290154282251330792197284299517823574717791527605218241624377364723669233285142811814455862960713365194931999243676680836828544384412576956502509854416748528108285253485478814486976604633100660035348792706969963923100288570622106673210859469799785299776492073425034159496677043106342290784533088296090311192323778013188036632833562326663606103100413744260468615195081428679123599204810752000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001<1276>]

Categories