Number Info

ID 58398
Size 1443 digits / 4793 bits
Value 507024057860399019320173580894914635198949797589245302607760997614675730644900190972556997287888573190717081017278343132421010680549648888418933375476302434334997455508601490405925525419696449342340615988107057101777166834586030476575323172298676830193483430922760045368564257960369248610224462897282352015744418708070110513524982314541165067039287266781901688548309237850414093600762043769124400645579099012078422018035698617043765121642705227026379712863483567351158883438497922550873316043981240968925701614479690509418362335506329869466373865291413600501678269185160323852832415976729461330884141014616826124334629073323294837990451697554038258115952942011591388000203325955586663359258523094185113453870658019685437068755207397522701582400916788817080382641668119129931802222882928476901260834489732829103960365732412685308302541183381171697506747591572589553240085205117013217906248477851966558744257007681413047236192921069128610057991104249839388777605658384138344977175063618178602480028257331716260061676919674213280910951878194804892150521795949467318268550320125610479261819910458913659658269492151867747841734107576883304006439465224596097166666087620621620513575028001819697203205611138816078621109661454995876332885740642071225963312746256681103733555200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001
Progress 1.99%
Completed no
Small factors
Large cofactor 507024057860399019320173580894914635198949797589245302607760997614675730644900190972556997287888573190717081017278343132421010680549648888418933375476302434334997455508601490405925525419696449342340615988107057101777166834586030476575323172298676830193483430922760045368564257960369248610224462897282352015744418708070110513524982314541165067039287266781901688548309237850414093600762043769124400645579099012078422018035698617043765121642705227026379712863483567351158883438497922550873316043981240968925701614479690509418362335506329869466373865291413600501678269185160323852832415976729461330884141014616826124334629073323294837990451697554038258115952942011591388000203325955586663359258523094185113453870658019685437068755207397522701582400916788817080382641668119129931802222882928476901260834489732829103960365732412685308302541183381171697506747591572589553240085205117013217906248477851966558744257007681413047236192921069128610057991104249839388777605658384138344977175063618178602480028257331716260061676919674213280910951878194804892150521795949467318268550320125610479261819910458913659658269492151867747841734107576883304006439465224596097166666087620621620513575028001819697203205611138816078621109661454995876332885740642071225963312746256681103733555200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (composite)

Factorization

Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>

507024057860399019320173580894914635198949797589245302607760997614675730644900190972556997287888573190717081017278343132421010680549648888418933375476302434334997455508601490405925525419696449342340615988107057101777166834586030476575323172298676830193483430922760045368564257960369248610224462897282352015744418708070110513524982314541165067039287266781901688548309237850414093600762043769124400645579099012078422018035698617043765121642705227026379712863483567351158883438497922550873316043981240968925701614479690509418362335506329869466373865291413600501678269185160323852832415976729461330884141014616826124334629073323294837990451697554038258115952942011591388000203325955586663359258523094185113453870658019685437068755207397522701582400916788817080382641668119129931802222882928476901260834489732829103960365732412685308302541183381171697506747591572589553240085205117013217906248477851966558744257007681413047236192921069128610057991104249839388777605658384138344977175063618178602480028257331716260061676919674213280910951878194804892150521795949467318268550320125610479261819910458913659658269492151867747841734107576883304006439465224596097166666087620621620513575028001819697203205611138816078621109661454995876332885740642071225963312746256681103733555200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 = 46512389457636541893453050033<29> × [10900838760868139132960136538347050365997190566823140005122742275704460983458600620835939712594489798460855830660704672572704636576314768949722223319081291622498500496738049249663920099573448547619765006153808811622883984852451034927197554402429266282460032879862330074592713341149268017066944207010598494641652846165293751677465820498184017658054701169089064473872353493270144670563096453396352578882716278796736200002489987768551957074991294170877279920140785830565138138235906624825513490029647086404750300809251314428227829859888255435259279888744361225523169276821058945757315703541068850830575920880174557437019786003253592485864180748137407362149360181895999311083602402758534820764472891164040948725214035440365899789092795658261621376680105638110164610974118046289978466995849819635571647838970284845894561637002416999477780941233696592519511655003853840451287328297394940909437951695108355903813876640574595404169507744689574267951537764976451798795729275037625995092720377260092974355424734495093260216970952885165389407892636291838495167898872539972380020241398365271306323811225003915319248761749934700789478939958815428077931076797251073328941654662513227908345860092404982872958497199228356507685735929156264040118150987403335869530900115309314405583522045799615484817995769937597272070283726382684702753544021528553621752632148679445763989093625945286969568332405939420330901463322492653172129519697<1415>]

Categories