Number Info
ID | 58483 |
Size | 1688 digits / 5608 bits |
Value | 83610322899426416905952140579316807381396294828128390106575986604961765216262972392898150317524777335283691855970854059997905437335845893715020426175550770478508663540286043036366938875821403089268811791271000687606079944565867304598505241560805586706603858976861610325084428344037015302687866243040349891375324011296127028460291647836079770061816045601403372164602576605731091673346063963000981508433458577082414354516291503134309291308679472692074809544137792354880387219257132409997946035512339224312800665509143223614668612623567020158368014884704885086902644631183284993473816055250710362966493392186859552718310333471560173701099502986597933877172167872738852449660971487212252710285762863370800842531948966133200754646429445859494800072429447354340402012305095591183029354791971895780678288406837313183459042633081615694379836505581720984896364544400032216148536914374372924062022656856182275174863308859109186635393329712057094292306269611953077654818931401624980357494638258629999999331007405485701122539630760145169920905716772697233019808082308512740915475574961879348468691420484447354088101815237563460800472917086729577901848506172980626684243445634481140299953248347060307754914268193499610203694161644702916958655974529015790735423816862226156750299658390359445730237686866893349075795524781354730266186260468787639953617443795409327253918416718635396210633527984592367449557524220569174958225881347797755899578004425657173969235650344384221338851580262634032025265242112000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 |
Progress | 0.00% |
Completed | no |
Small factors | |
Large cofactor | 83610322899426416905952140579316807381396294828128390106575986604961765216262972392898150317524777335283691855970854059997905437335845893715020426175550770478508663540286043036366938875821403089268811791271000687606079944565867304598505241560805586706603858976861610325084428344037015302687866243040349891375324011296127028460291647836079770061816045601403372164602576605731091673346063963000981508433458577082414354516291503134309291308679472692074809544137792354880387219257132409997946035512339224312800665509143223614668612623567020158368014884704885086902644631183284993473816055250710362966493392186859552718310333471560173701099502986597933877172167872738852449660971487212252710285762863370800842531948966133200754646429445859494800072429447354340402012305095591183029354791971895780678288406837313183459042633081615694379836505581720984896364544400032216148536914374372924062022656856182275174863308859109186635393329712057094292306269611953077654818931401624980357494638258629999999331007405485701122539630760145169920905716772697233019808082308512740915475574961879348468691420484447354088101815237563460800472917086729577901848506172980626684243445634481140299953248347060307754914268193499610203694161644702916958655974529015790735423816862226156750299658390359445730237686866893349075795524781354730266186260468787639953617443795409327253918416718635396210633527984592367449557524220569174958225881347797755899578004425657173969235650344384221338851580262634032025265242112000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 (composite) |
Factorization
Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>
83610322899426416905952140579316807381396294828128390106575986604961765216262972392898150317524777335283691855970854059997905437335845893715020426175550770478508663540286043036366938875821403089268811791271000687606079944565867304598505241560805586706603858976861610325084428344037015302687866243040349891375324011296127028460291647836079770061816045601403372164602576605731091673346063963000981508433458577082414354516291503134309291308679472692074809544137792354880387219257132409997946035512339224312800665509143223614668612623567020158368014884704885086902644631183284993473816055250710362966493392186859552718310333471560173701099502986597933877172167872738852449660971487212252710285762863370800842531948966133200754646429445859494800072429447354340402012305095591183029354791971895780678288406837313183459042633081615694379836505581720984896364544400032216148536914374372924062022656856182275174863308859109186635393329712057094292306269611953077654818931401624980357494638258629999999331007405485701122539630760145169920905716772697233019808082308512740915475574961879348468691420484447354088101815237563460800472917086729577901848506172980626684243445634481140299953248347060307754914268193499610203694161644702916958655974529015790735423816862226156750299658390359445730237686866893349075795524781354730266186260468787639953617443795409327253918416718635396210633527984592367449557524220569174958225881347797755899578004425657173969235650344384221338851580262634032025265242112000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 = [83610322899426416905952140579316807381396294828128390106575986604961765216262972392898150317524777335283691855970854059997905437335845893715020426175550770478508663540286043036366938875821403089268811791271000687606079944565867304598505241560805586706603858976861610325084428344037015302687866243040349891375324011296127028460291647836079770061816045601403372164602576605731091673346063963000981508433458577082414354516291503134309291308679472692074809544137792354880387219257132409997946035512339224312800665509143223614668612623567020158368014884704885086902644631183284993473816055250710362966493392186859552718310333471560173701099502986597933877172167872738852449660971487212252710285762863370800842531948966133200754646429445859494800072429447354340402012305095591183029354791971895780678288406837313183459042633081615694379836505581720984896364544400032216148536914374372924062022656856182275174863308859109186635393329712057094292306269611953077654818931401624980357494638258629999999331007405485701122539630760145169920905716772697233019808082308512740915475574961879348468691420484447354088101815237563460800472917086729577901848506172980626684243445634481140299953248347060307754914268193499610203694161644702916958655974529015790735423816862226156750299658390359445730237686866893349075795524781354730266186260468787639953617443795409327253918416718635396210633527984592367449557524220569174958225881347797755899578004425657173969235650344384221338851580262634032025265242112000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001<1688>]
Categories
- n!/n# + 1 (index 674)