Number Info
ID | 58741 |
Size | 2458 digits / 8165 bits |
Value | 7300186990463417616072933259934128176574284531766207645694323402418683657388993445205748179651038776957191089555994227456261403187708750859909599551661567952616008828597343713854139036292031160574447552958752822444614505179758914864477912804641574817992926632785075981867557709949288772474564013382472479350508811780537062927071339676311402917698319270552966415060977880686582746412225907272255613609066276047037092678457611485391083494597038652487744857208690611826499455276622979430524549018535155770745341540474309661596526788616861152664762304965182465728916565316769687639440251140165609850616379445662867706497887608293088063616324105831788608536864493156315538293418466732756578800807551450373011223166306861745670334830485418072289508401284275186115394684725281135310106793843953197225691274714416731349292065875049515319957915337147872815907877420096940776250186178793182192055241378989726288907748355996540354482011761547436452322171839980626863678357945515300491407674450998099436066481387660734942115180773146232305686626093304066106059503164966507497565370706777528295155966304471387544332300057525504213475654778329329155837332472393288789937114533357525538243548978638271328362020722242554550542677946519542616568730122713617111899246545383350624040414884975088389450204413891466405575984305885121248801697695301708377498900107759585711608701570195118310185675920244094785054869840039324914478830405972125012759667293453673299375021393542205839517438280073325768677263981236012242743487087961149609966161969511139771407609495084275448130030153422367293756725352363936689568613125151381077753813794750327058815568943176235763906595658938940045152138457658516739732180986883959751402041252764426763392351244718963319440581233194266163772276391156442162582869184693071470587062429488411765304992530900546658577533915884796176366224575007362058676582758931662368395135246637149503145980615663727583265117160258946161736012786926682181393501787416447020589974371618530400760952483343578432430374191912892606596955531357437474041344944799350130710218966175561811836361033142113862010953233681352825079857532178321866077079844413585272141951901855197562641434555677732241408000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 |
Progress | 1.97% |
Completed | no |
Small factors | 1274929 |
Large cofactor | 5725955712407057660523004229987809655733209089891443088747940789188012553945351815831115442233284188340833951973791660128729837651907479443882443298145675525943804579390180718968773191520493424005923116470605674860807547071059576544637319258281500238831281297064445143115857988914903318125608573797029073266439787455252067312823960923558412207815744461497829616442153155733835175458575267542157730829768776180506595017022603992372189741230326278943960688954985424150285588669347845590244279499905607112823805514247702940004131044643945782600256410329659507101114309359007197765083585940994055238069241068061725560009920245200390032398921120965786023015293003105518454983311593612472991673110856722510046616844002185020240605422329728221955503719253601719088196036583434164028041399830071476314125158902508870179666527214495485881925907511044044661238294383527977460901890363144286616788261447492155476036507410213855324086291677063927836234152521419331479383054229306338228566198157699840097814451932351319126096575396077924579083718460639036453056996244470482275927028647695305617141006522301545846343051305229941599473896019566053604426075861787824098390666878985045863921480316659415017120185298351951011030949916834225762037517479572287642605389433751487827196977153218013230109444850569299471245837459093895619914283615245796728679714798047252601210500012310582244333351833901413165011439727262714170341117353179765314585884620597439778509251412072519990930819112337491553394160758156738330325443289752723179068137888079367377640330947907119100851914226927434620874358770067930598149868051594544541502949415026505051509196938163800308806683085049394942896536558238550334749763309865851158301396589742979227386271113700420430816603303552014397485880697008572369585184104128991865889835770845601414121878575905439956717224187295760137518422261166984246712234766745177471369099962929033305498565501030824134728378725606638614178525068397285010689616274644664150387962287796834490988088343228194222917804985150461403416939713001616148068908107666662324498241836349758937035992618523944362400536213139204477331567116426343636451190493285183153055544192543425996774278846647720964389389526789334935514056076848200958641618474440537473067127659657910362067220998188918755475795122708793979900057179654710183861218938466377343365787428162666313182930186700592738889773469738314839493022748717771734739738448180251606167872877626910988768786340258947753169 (composite) |
Factorization
Format: number = small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>
7300186990463417616072933259934128176574284531766207645694323402418683657388993445205748179651038776957191089555994227456261403187708750859909599551661567952616008828597343713854139036292031160574447552958752822444614505179758914864477912804641574817992926632785075981867557709949288772474564013382472479350508811780537062927071339676311402917698319270552966415060977880686582746412225907272255613609066276047037092678457611485391083494597038652487744857208690611826499455276622979430524549018535155770745341540474309661596526788616861152664762304965182465728916565316769687639440251140165609850616379445662867706497887608293088063616324105831788608536864493156315538293418466732756578800807551450373011223166306861745670334830485418072289508401284275186115394684725281135310106793843953197225691274714416731349292065875049515319957915337147872815907877420096940776250186178793182192055241378989726288907748355996540354482011761547436452322171839980626863678357945515300491407674450998099436066481387660734942115180773146232305686626093304066106059503164966507497565370706777528295155966304471387544332300057525504213475654778329329155837332472393288789937114533357525538243548978638271328362020722242554550542677946519542616568730122713617111899246545383350624040414884975088389450204413891466405575984305885121248801697695301708377498900107759585711608701570195118310185675920244094785054869840039324914478830405972125012759667293453673299375021393542205839517438280073325768677263981236012242743487087961149609966161969511139771407609495084275448130030153422367293756725352363936689568613125151381077753813794750327058815568943176235763906595658938940045152138457658516739732180986883959751402041252764426763392351244718963319440581233194266163772276391156442162582869184693071470587062429488411765304992530900546658577533915884796176366224575007362058676582758931662368395135246637149503145980615663727583265117160258946161736012786926682181393501787416447020589974371618530400760952483343578432430374191912892606596955531357437474041344944799350130710218966175561811836361033142113862010953233681352825079857532178321866077079844413585272141951901855197562641434555677732241408000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 = 1274929 × 478966209364935060257<21> × 3802781786653226187497<22> × [3143704407956454626701440548201908495713655093322094822832230174783056608033601341147721306760311890392338750601422415255615958693217859476277288431854262135871514525169768150359497381640573138957249664433925815810160581051230535363922593443680679035989928212343066661485762072034472136746177272756690683123210238128038004943002386340829281680325770575743673459667571924742618123789346320627760164420692388026526182698087156581143097074707260622654456885170080931530139750142130775467406585259656701763078109972462170002933748437935982230745967483185796509966488135686595292913796564029205430474466956000566973570334971308198276078471710632714647776870374876724398615067126609512564764616177921908633275632984258422194783214902621787848576023303112148775496140427281529594228874448772717424871677434216733912190409494873672284998255537048583416633027513689359740546375221382771200956994572964614146214693996184847349770808512123744869920154497132504477230335380027566331905456243535428710715140983402409856116698836023798601998386785187581036523335493629862624873367742391665111938322673953613969183437238115421442564680015940992410186398807609964454558632906942670762526485310631797824621652554302984207800053577406508575343190567589473801805524198785940230016941453558039652857920888070512584506914822806136170291610876193586601506224548126110375818408092462041753588212487016556513353079121669068468426469342032099789717452746318950376359105548568470517955604710902492960960560556894573120883949189383806022652160645831082968589669271720275847662852570907733160202830089912572663638876760032798451401393541440938783442750241597361689189008246225919412583163679189064073650935222784393171414861859976333008274130540559217346357305585298868536853317706265115955666346037842390190646037122675622612670229643114659181318531272215298878503879916455320338047044127079163151101210724549003609147358336706825054489573186186555025073164643440911561503542416258168268105535566815343614015175063766394803832508809738908855506015843860336596450650239603712809873569491674392231072196783146079693136737089827486889565642232967387620078154511459391662587738002068844717566629199911312563745973047348523469412503193163209461965098098443200700276579822986770506990404236254326025602900206167030133623218846648778662658949369968811708311027739866520907277185474795561321552109925680696586293337155985437123365451984601556361<2410>]
Categories
- n!/n# + 1 (index 932)