tables > factorial

Factorial

The factorial numbers are defined with \(0!=1\) and \(n!=n\times(n-1)!\) for \(n\geq1\).

The double factorial numbers are defined with \(0!!=1\), \(1!!=1\) and \(n!!=n\times(n-2)!!\) for \(n\geq2\).

More generally, the \(k\)-factorial numbers are defined with \(0!_{(k)}=1\), \(n!_{(k)}=n\) for \(1\leq n\leq k\), and \(n!_{(k)}=n\times(n-k)!_{(k)}\) for \(n>k\).

Factorial numbers are trivial to factor since they are constructed by multiplying small numbers, but if \(1\) is added or subtracted, then most are hard to factor.

Links

> n! - 1 (table, 0-999) > n! + 1 (table, 0-999) > n!! - 1 (table, 0-999) > n!! + 1 (table, 0-999) > n!!! - 1 (table, 0-999) > n!!! + 1 (table, 0-999) > n!!!! - 1 (table, 0-999) > n!!!! + 1 (table, 0-999) > n!!!!! - 1 (table, 0-999) > n!!!!! + 1 (table, 0-999)