Fibonacci Sequence
Defined with \(F_0=0\), \(F_1=1\), and \(F_n=F_{n-1}+F_{n-2}\) when \(n\geq2\).
Table
Viewing: 0 – 99 next >>
Format: small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>
| 0: | \[F_{0}\] | 0 |
| 1: | \[F_{1}\] | 1 |
| 2: | \[F_{2}\] | 1 |
| 3: | \[F_{3}\] | 2 |
| 4: | \[F_{4}\] | 3 |
| 5: | \[F_{5}\] | 5 |
| 6: | \[F_{6}\] | 23 |
| 7: | \[F_{7}\] | 13 |
| 8: | \[F_{8}\] | 3 × 7 |
| 9: | \[F_{9}\] | 2 × 17 |
| 10: | \[F_{10}\] | 5 × 11 |
| 11: | \[F_{11}\] | 89 |
| 12: | \[F_{12}\] | 24 × 32 |
| 13: | \[F_{13}\] | 233 |
| 14: | \[F_{14}\] | 13 × 29 |
| 15: | \[F_{15}\] | 2 × 5 × 61 |
| 16: | \[F_{16}\] | 3 × 7 × 47 |
| 17: | \[F_{17}\] | 1597 |
| 18: | \[F_{18}\] | 23 × 17 × 19 |
| 19: | \[F_{19}\] | 37 × 113 |
| 20: | \[F_{20}\] | 3 × 5 × 11 × 41 |
| 21: | \[F_{21}\] | 2 × 13 × 421 |
| 22: | \[F_{22}\] | 89 × 199 |
| 23: | \[F_{23}\] | 28657 |
| 24: | \[F_{24}\] | 25 × 32 × 7 × 23 |
| 25: | \[F_{25}\] | 52 × 3001 |
| 26: | \[F_{26}\] | 233 × 521 |
| 27: | \[F_{27}\] | 2 × 17 × 53 × 109 |
| 28: | \[F_{28}\] | 3 × 13 × 29 × 281 |
| 29: | \[F_{29}\] | 514229 |
| 30: | \[F_{30}\] | 23 × 5 × 11 × 31 × 61 |
| 31: | \[F_{31}\] | 557 × 2417 |
| 32: | \[F_{32}\] | 3 × 7 × 47 × 2207 |
| 33: | \[F_{33}\] | 2 × 89 × 19801 |
| 34: | \[F_{34}\] | 1597 × 3571 |
| 35: | \[F_{35}\] | 5 × 13 × 141961 |
| 36: | \[F_{36}\] | 24 × 33 × 17 × 19 × 107 |
| 37: | \[F_{37}\] | 73 × 149 × 2221 |
| 38: | \[F_{38}\] | 37 × 113 × 9349 |
| 39: | \[F_{39}\] | 2 × 233 × 135721 |
| 40: | \[F_{40}\] | 3 × 5 × 7 × 11 × 41 × 2161 |
| 41: | \[F_{41}\] | 2789 × 59369 |
| 42: | \[F_{42}\] | 23 × 13 × 29 × 211 × 421 |
| 43: | \[F_{43}\] | 433494437 |
| 44: | \[F_{44}\] | 3 × 43 × 89 × 199 × 307 |
| 45: | \[F_{45}\] | 2 × 5 × 17 × 61 × 109441 |
| 46: | \[F_{46}\] | 139 × 461 × 28657 |
| 47: | \[F_{47}\] | 2971215073 |
| 48: | \[F_{48}\] | 26 × 32 × 7 × 23 × 47 × 1103 |
| 49: | \[F_{49}\] | 13 × 97 × 6168709 |
| 50: | \[F_{50}\] | 52 × 11 × 101 × 151 × 3001 |
| 51: | \[F_{51}\] | 2 × 1597 × 6376021 |
| 52: | \[F_{52}\] | 3 × 233 × 521 × 90481 |
| 53: | \[F_{53}\] | 953 × 55945741 |
| 54: | \[F_{54}\] | 23 × 17 × 19 × 53 × 109 × 5779 |
| 55: | \[F_{55}\] | 5 × 89 × 661 × 474541 |
| 56: | \[F_{56}\] | 3 × 72 × 13 × 29 × 281 × 14503 |
| 57: | \[F_{57}\] | 2 × 37 × 113 × 797 × 54833 |
| 58: | \[F_{58}\] | 59 × 19489 × 514229 |
| 59: | \[F_{59}\] | 353 × 2710260697 |
| 60: | \[F_{60}\] | 24 × 32 × 5 × 11 × 31 × 41 × 61 × 2521 |
| 61: | \[F_{61}\] | 4513 × 555003497 |
| 62: | \[F_{62}\] | 557 × 2417 × 3010349 |
| 63: | \[F_{63}\] | 2 × 13 × 17 × 421 × 35239681 |
| 64: | \[F_{64}\] | 3 × 7 × 47 × 1087 × 2207 × 4481 |
| 65: | \[F_{65}\] | 5 × 233 × 14736206161<11> |
| 66: | \[F_{66}\] | 23 × 89 × 199 × 9901 × 19801 |
| 67: | \[F_{67}\] | 269 × 116849 × 1429913 |
| 68: | \[F_{68}\] | 3 × 67 × 1597 × 3571 × 63443 |
| 69: | \[F_{69}\] | 2 × 137 × 829 × 18077 × 28657 |
| 70: | \[F_{70}\] | 5 × 11 × 13 × 29 × 71 × 911 × 141961 |
| 71: | \[F_{71}\] | 6673 × 46165371073<11> |
| 72: | \[F_{72}\] | 25 × 33 × 7 × 17 × 19 × 23 × 107 × 103681 |
| 73: | \[F_{73}\] | 9375829 × 86020717 |
| 74: | \[F_{74}\] | 73 × 149 × 2221 × 54018521 |
| 75: | \[F_{75}\] | 2 × 52 × 61 × 3001 × 230686501 |
| 76: | \[F_{76}\] | 3 × 37 × 113 × 9349 × 29134601 |
| 77: | \[F_{77}\] | 13 × 89 × 988681 × 4832521 |
| 78: | \[F_{78}\] | 23 × 79 × 233 × 521 × 859 × 135721 |
| 79: | \[F_{79}\] | 157 × 92180471494753<14> |
| 80: | \[F_{80}\] | 3 × 5 × 7 × 11 × 41 × 47 × 1601 × 2161 × 3041 |
| 81: | \[F_{81}\] | 2 × 17 × 53 × 109 × 2269 × 4373 × 19441 |
| 82: | \[F_{82}\] | 2789 × 59369 × 370248451 |
| 83: | \[F_{83}\] | 99194853094755497<17> |
| 84: | \[F_{84}\] | 24 × 32 × 13 × 29 × 83 × 211 × 281 × 421 × 1427 |
| 85: | \[F_{85}\] | 5 × 1597 × 9521 × 3415914041 |
| 86: | \[F_{86}\] | 6709 × 144481 × 433494437 |
| 87: | \[F_{87}\] | 2 × 173 × 514229 × 3821263937 |
| 88: | \[F_{88}\] | 3 × 7 × 43 × 89 × 199 × 263 × 307 × 881 × 967 |
| 89: | \[F_{89}\] | 1069 × 1665088321800481<16> |
| 90: | \[F_{90}\] | 23 × 5 × 11 × 17 × 19 × 31 × 61 × 181 × 541 × 109441 |
| 91: | \[F_{91}\] | 132 × 233 × 741469 × 159607993 |
| 92: | \[F_{92}\] | 3 × 139 × 461 × 4969 × 28657 × 275449 |
| 93: | \[F_{93}\] | 2 × 557 × 2417 × 4531100550901<13> |
| 94: | \[F_{94}\] | 2971215073 × 6643838879<10> |
| 95: | \[F_{95}\] | 5 × 37 × 113 × 761 × 29641 × 67735001 |
| 96: | \[F_{96}\] | 27 × 32 × 7 × 23 × 47 × 769 × 1103 × 2207 × 3167 |
| 97: | \[F_{97}\] | 193 × 389 × 3084989 × 361040209 |
| 98: | \[F_{98}\] | 13 × 29 × 97 × 6168709 × 599786069 |
| 99: | \[F_{99}\] | 2 × 17 × 89 × 197 × 19801 × 18546805133<11> |
Index range: 0 – 99 next >>