Fibonacci Sequence
Defined with \(F_0=0\), \(F_1=1\), and \(F_n=F_{n-1}+F_{n-2}\) when \(n\geq2\).
Table
Format: small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>
| 100: | \[F_{100}\] | 3 × 52 × 11 × 41 × 101 × 151 × 401 × 3001 × 570601 |
| 101: | \[F_{101}\] | 743519377 × 770857978613<12> |
| 102: | \[F_{102}\] | 23 × 919 × 1597 × 3469 × 3571 × 6376021 |
| 103: | \[F_{103}\] | 519121 × 5644193 × 512119709 |
| 104: | \[F_{104}\] | 3 × 7 × 103 × 233 × 521 × 90481 × 102193207 |
| 105: | \[F_{105}\] | 2 × 5 × 13 × 61 × 421 × 141961 × 8288823481<10> |
| 106: | \[F_{106}\] | 953 × 55945741 × 119218851371<12> |
| 107: | \[F_{107}\] | 1247833 × 8242065050061761<16> |
| 108: | \[F_{108}\] | 24 × 34 × 17 × 19 × 53 × 107 × 109 × 5779 × 11128427 |
| 109: | \[F_{109}\] | 827728777 × 32529675488417<14> |
| 110: | \[F_{110}\] | 5 × 112 × 89 × 199 × 331 × 661 × 39161 × 474541 |
| 111: | \[F_{111}\] | 2 × 73 × 149 × 2221 × 1459000305513721<16> |
| 112: | \[F_{112}\] | 3 × 72 × 13 × 29 × 47 × 281 × 14503 × 10745088481<11> |
| 113: | \[F_{113}\] | 677 × 272602401466814027129<21> |
| 114: | \[F_{114}\] | 23 × 37 × 113 × 229 × 797 × 9349 × 54833 × 95419 |
| 115: | \[F_{115}\] | 5 × 1381 × 28657 × 2441738887963981<16> |
| 116: | \[F_{116}\] | 3 × 59 × 347 × 19489 × 514229 × 1270083883 |
| 117: | \[F_{117}\] | 2 × 17 × 233 × 29717 × 135721 × 39589685693<11> |
| 118: | \[F_{118}\] | 353 × 709 × 8969 × 336419 × 2710260697 |
| 119: | \[F_{119}\] | 13 × 1597 × 159512939815855788121<21> |
| 120: | \[F_{120}\] | 25 × 32 × 5 × 7 × 11 × 23 × 31 × 41 × 61 × 241 × 2161 × 2521 × 20641 |
| 121: | \[F_{121}\] | 89 × 97415813466381445596089<23> |
| 122: | \[F_{122}\] | 4513 × 555003497 × 5600748293801<13> |
| 123: | \[F_{123}\] | 2 × 2789 × 59369 × 68541957733949701<17> |
| 124: | \[F_{124}\] | 3 × 557 × 2417 × 3010349 × 3020733700601<13> |
| 125: | \[F_{125}\] | 53 × 3001 × 158414167964045700001<21> |
| 126: | \[F_{126}\] | 23 × 13 × 17 × 19 × 29 × 211 × 421 × 1009 × 31249 × 35239681 |
| 127: | \[F_{127}\] | 27941 × 5568053048227732210073<22> |
| 128: | \[F_{128}\] | 3 × 7 × 47 × 127 × 1087 × 2207 × 4481 × 186812208641<12> |
| 129: | \[F_{129}\] | 2 × 257 × 5417 × 8513 × 39639893 × 433494437 |
| 130: | \[F_{130}\] | 5 × 11 × 131 × 233 × 521 × 2081 × 24571 × 14736206161<11> |
| 131: | \[F_{131}\] | 1066340417491710595814572169<28> |
| 132: | \[F_{132}\] | 24 × 32 × 43 × 89 × 199 × 307 × 9901 × 19801 × 261399601 |
| 133: | \[F_{133}\] | 13 × 37 × 113 × 3457 × 42293 × 351301301942501<15> |
| 134: | \[F_{134}\] | 269 × 4021 × 116849 × 1429913 × 24994118449<11> |
| 135: | \[F_{135}\] | 2 × 5 × 17 × 53 × 61 × 109 × 109441 × 1114769954367361<16> |
| 136: | \[F_{136}\] | 3 × 7 × 67 × 1597 × 3571 × 63443 × 23230657239121<14> |
| 137: | \[F_{137}\] | 19134702400093278081449423917<29> |
| 138: | \[F_{138}\] | 23 × 137 × 139 × 461 × 691 × 829 × 18077 × 28657 × 1485571 |
| 139: | \[F_{139}\] | 277 × 2114537501 × 85526722937689093<17> |
| 140: | \[F_{140}\] | 3 × 5 × 11 × 13 × 29 × 41 × 71 × 281 × 911 × 141961 × 12317523121<11> |
| 141: | \[F_{141}\] | 2 × 108289 × 1435097 × 142017737 × 2971215073 |
| 142: | \[F_{142}\] | 6673 × 46165371073<11> × 688846502588399<15> |
| 143: | \[F_{143}\] | 89 × 233 × 8581 × 1929584153756850496621<22> |
| 144: | \[F_{144}\] | 26 × 33 × 7 × 17 × 19 × 23 × 47 × 107 × 1103 × 103681 × 10749957121<11> |
| 145: | \[F_{145}\] | 5 × 514229 × 349619996930737079890201<24> |
| 146: | \[F_{146}\] | 151549 × 9375829 × 86020717 × 11899937029<11> |
| 147: | \[F_{147}\] | 2 × 13 × 97 × 293 × 421 × 3529 × 6168709 × 347502052673<12> |
| 148: | \[F_{148}\] | 3 × 73 × 149 × 2221 × 11987 × 54018521 × 81143477963<11> |
| 149: | \[F_{149}\] | 110557 × 162709 × 4000949 × 85607646594577<14> |
| 150: | \[F_{150}\] | 23 × 52 × 11 × 31 × 61 × 101 × 151 × 3001 × 12301 × 18451 × 230686501 |
| 151: | \[F_{151}\] | 5737 × 2811666624525811646469915877<28> |
| 152: | \[F_{152}\] | 3 × 7 × 37 × 113 × 9349 × 29134601 × 1091346396980401<16> |
| 153: | \[F_{153}\] | 2 × 172 × 1597 × 6376021 × 7175323114950564593<19> |
| 154: | \[F_{154}\] | 13 × 29 × 89 × 199 × 229769 × 988681 × 4832521 × 9321929 |
| 155: | \[F_{155}\] | 5 × 557 × 2417 × 21701 × 12370533881<11> × 61182778621<11> |
| 156: | \[F_{156}\] | 24 × 32 × 79 × 233 × 521 × 859 × 90481 × 135721 × 12280217041<11> |
| 157: | \[F_{157}\] | 313 × 11617 × 7636481 × 10424204306491346737<20> |
| 158: | \[F_{158}\] | 157 × 92180471494753<14> × 32361122672259149<17> |
| 159: | \[F_{159}\] | 2 × 317 × 953 × 55945741 × 97639037 × 229602768949<12> |
| 160: | \[F_{160}\] | 3 × 5 × 7 × 11 × 41 × 47 × 1601 × 2161 × 2207 × 3041 × 23725145626561<14> |
| 161: | \[F_{161}\] | 13 × 8693 × 28657 × 612606107755058997065597<24> |
| 162: | \[F_{162}\] | 23 × 17 × 19 × 53 × 109 × 2269 × 3079 × 4373 × 5779 × 19441 × 62650261 |
| 163: | \[F_{163}\] | 977 × 4892609 × 33365519393<11> × 32566223208133<14> |
| 164: | \[F_{164}\] | 3 × 163 × 2789 × 59369 × 800483 × 350207569 × 370248451 |
| 165: | \[F_{165}\] | 2 × 5 × 61 × 89 × 661 × 19801 × 86461 × 474541 × 518101 × 900241 |
| 166: | \[F_{166}\] | 35761381 × 6202401259<10> × 99194853094755497<17> |
| 167: | \[F_{167}\] | 18104700793<11> × 1966344318693345608565721<25> |
| 168: | \[F_{168}\] | 25 × 32 × 72 × 13 × 23 × 29 × 83 × 167 × 211 × 281 × 421 × 1427 × 14503 × 65740583 |
| 169: | \[F_{169}\] | 233 × 337 × 89909 × 104600155609<12> × 126213229732669<15> |
| 170: | \[F_{170}\] | 5 × 11 × 1597 × 3571 × 9521 × 1158551 × 12760031 × 3415914041 |
| 171: | \[F_{171}\] | 2 × 17 × 37 × 113 × 797 × 6841 × 54833 × 5741461760879844361<19> |
| 172: | \[F_{172}\] | 3 × 6709 × 144481 × 433494437 × 313195711516578281<18> |
| 173: | \[F_{173}\] | 1639343785721<13> × 389678749007629271532733<24> |
| 174: | \[F_{174}\] | 23 × 59 × 173 × 349 × 19489 × 514229 × 947104099 × 3821263937 |
| 175: | \[F_{175}\] | 52 × 13 × 701 × 3001 × 141961 × 17231203730201189308301<23> |
| 176: | \[F_{176}\] | 3 × 7 × 43 × 47 × 89 × 199 × 263 × 307 × 881 × 967 × 93058241 × 562418561 |
| 177: | \[F_{177}\] | 2 × 353 × 2191261 × 805134061 × 1297027681 × 2710260697 |
| 178: | \[F_{178}\] | 179 × 1069 × 1665088321800481<16> × 22235502640988369<17> |
| 179: | \[F_{179}\] | 21481 × 156089 × 3418816640903898929534613769<28> |
| 180: | \[F_{180}\] | 24 × 33 × 5 × 11 × 17 × 19 × 31 × 41 × 61 × 107 × 181 × 541 × 2521 × 109441 × 10783342081<11> |
| 181: | \[F_{181}\] | 8689 × 422453 × 8175789237238547574551461093<28> |
| 182: | \[F_{182}\] | 132 × 29 × 233 × 521 × 741469 × 159607993 × 689667151970161<15> |
| 183: | \[F_{183}\] | 2 × 1097 × 4513 × 555003497 × 14297347971975757800833<23> |
| 184: | \[F_{184}\] | 3 × 7 × 139 × 461 × 4969 × 28657 × 253367 × 275449 × 9506372193863<13> |
| 185: | \[F_{185}\] | 5 × 73 × 149 × 2221 × 1702945513191305556907097618161<31> |
| 186: | \[F_{186}\] | 23 × 557 × 2417 × 63799 × 3010349 × 35510749 × 4531100550901<13> |
| 187: | \[F_{187}\] | 89 × 373 × 1597 × 10157807305963434099105034917037<32> |
| 188: | \[F_{188}\] | 3 × 563 × 5641 × 2971215073 × 6643838879<10> × 4632894751907<13> |
| 189: | \[F_{189}\] | 2 × 13 × 17 × 53 × 109 × 421 × 38933 × 35239681 × 955921950316735037<18> |
| 190: | \[F_{190}\] | 5 × 11 × 37 × 113 × 191 × 761 × 9349 × 29641 × 41611 × 67735001 × 87382901 |
| 191: | \[F_{191}\] | 4870723671313<13> × 757810806256989128439975793<27> |
| 192: | \[F_{192}\] | 28 × 32 × 7 × 23 × 47 × 769 × 1087 × 1103 × 2207 × 3167 × 4481 × 11862575248703<14> |
| 193: | \[F_{193}\] | 9465278929<10> × 1020930432032326933976826008497<31> |
| 194: | \[F_{194}\] | 193 × 389 × 3299 × 3084989 × 361040209 × 56678557502141579<17> |
| 195: | \[F_{195}\] | 2 × 5 × 61 × 233 × 135721 × 14736206161<11> × 88999250837499877681<20> |
| 196: | \[F_{196}\] | 3 × 13 × 29 × 97 × 281 × 5881 × 6168709 × 599786069 × 61025309469041<14> |
| 197: | \[F_{197}\] | 15761 × 25795969 × 227150265697<12> × 717185107125886549<18> |
| 198: | \[F_{198}\] | 23 × 17 × 19 × 89 × 197 × 199 × 991 × 2179 × 9901 × 19801 × 1513909 × 18546805133<11> |
| 199: | \[F_{199}\] | 397 × 436782169201002048261171378550055269633<39> |