Lucas Sequence
Defined with \(L_0=2\), \(L_1=1\), and \(L_n=L_{n-1}+L_{n-2}\) when \(n\geq2\). Related to the Fibonacci sequence.
Table
Viewing: 0 – 99 next >>
Format: small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>
| 0: | \[L_{0}\] | 2 |
| 1: | \[L_{1}\] | 1 |
| 2: | \[L_{2}\] | 3 |
| 3: | \[L_{3}\] | 22 |
| 4: | \[L_{4}\] | 7 |
| 5: | \[L_{5}\] | 11 |
| 6: | \[L_{6}\] | 2 × 32 |
| 7: | \[L_{7}\] | 29 |
| 8: | \[L_{8}\] | 47 |
| 9: | \[L_{9}\] | 22 × 19 |
| 10: | \[L_{10}\] | 3 × 41 |
| 11: | \[L_{11}\] | 199 |
| 12: | \[L_{12}\] | 2 × 7 × 23 |
| 13: | \[L_{13}\] | 521 |
| 14: | \[L_{14}\] | 3 × 281 |
| 15: | \[L_{15}\] | 22 × 11 × 31 |
| 16: | \[L_{16}\] | 2207 |
| 17: | \[L_{17}\] | 3571 |
| 18: | \[L_{18}\] | 2 × 33 × 107 |
| 19: | \[L_{19}\] | 9349 |
| 20: | \[L_{20}\] | 7 × 2161 |
| 21: | \[L_{21}\] | 22 × 29 × 211 |
| 22: | \[L_{22}\] | 3 × 43 × 307 |
| 23: | \[L_{23}\] | 139 × 461 |
| 24: | \[L_{24}\] | 2 × 47 × 1103 |
| 25: | \[L_{25}\] | 11 × 101 × 151 |
| 26: | \[L_{26}\] | 3 × 90481 |
| 27: | \[L_{27}\] | 22 × 19 × 5779 |
| 28: | \[L_{28}\] | 72 × 14503 |
| 29: | \[L_{29}\] | 59 × 19489 |
| 30: | \[L_{30}\] | 2 × 32 × 41 × 2521 |
| 31: | \[L_{31}\] | 3010349 |
| 32: | \[L_{32}\] | 1087 × 4481 |
| 33: | \[L_{33}\] | 22 × 199 × 9901 |
| 34: | \[L_{34}\] | 3 × 67 × 63443 |
| 35: | \[L_{35}\] | 11 × 29 × 71 × 911 |
| 36: | \[L_{36}\] | 2 × 7 × 23 × 103681 |
| 37: | \[L_{37}\] | 54018521 |
| 38: | \[L_{38}\] | 3 × 29134601 |
| 39: | \[L_{39}\] | 22 × 79 × 521 × 859 |
| 40: | \[L_{40}\] | 47 × 1601 × 3041 |
| 41: | \[L_{41}\] | 370248451 |
| 42: | \[L_{42}\] | 2 × 32 × 83 × 281 × 1427 |
| 43: | \[L_{43}\] | 6709 × 144481 |
| 44: | \[L_{44}\] | 7 × 263 × 881 × 967 |
| 45: | \[L_{45}\] | 22 × 11 × 19 × 31 × 181 × 541 |
| 46: | \[L_{46}\] | 3 × 4969 × 275449 |
| 47: | \[L_{47}\] | 6643838879<10> |
| 48: | \[L_{48}\] | 2 × 769 × 2207 × 3167 |
| 49: | \[L_{49}\] | 29 × 599786069 |
| 50: | \[L_{50}\] | 3 × 41 × 401 × 570601 |
| 51: | \[L_{51}\] | 22 × 919 × 3469 × 3571 |
| 52: | \[L_{52}\] | 7 × 103 × 102193207 |
| 53: | \[L_{53}\] | 119218851371<12> |
| 54: | \[L_{54}\] | 2 × 34 × 107 × 11128427 |
| 55: | \[L_{55}\] | 112 × 199 × 331 × 39161 |
| 56: | \[L_{56}\] | 47 × 10745088481<11> |
| 57: | \[L_{57}\] | 22 × 229 × 9349 × 95419 |
| 58: | \[L_{58}\] | 3 × 347 × 1270083883 |
| 59: | \[L_{59}\] | 709 × 8969 × 336419 |
| 60: | \[L_{60}\] | 2 × 7 × 23 × 241 × 2161 × 20641 |
| 61: | \[L_{61}\] | 5600748293801<13> |
| 62: | \[L_{62}\] | 3 × 3020733700601<13> |
| 63: | \[L_{63}\] | 22 × 19 × 29 × 211 × 1009 × 31249 |
| 64: | \[L_{64}\] | 127 × 186812208641<12> |
| 65: | \[L_{65}\] | 11 × 131 × 521 × 2081 × 24571 |
| 66: | \[L_{66}\] | 2 × 32 × 43 × 307 × 261399601 |
| 67: | \[L_{67}\] | 4021 × 24994118449<11> |
| 68: | \[L_{68}\] | 7 × 23230657239121<14> |
| 69: | \[L_{69}\] | 22 × 139 × 461 × 691 × 1485571 |
| 70: | \[L_{70}\] | 3 × 41 × 281 × 12317523121<11> |
| 71: | \[L_{71}\] | 688846502588399<15> |
| 72: | \[L_{72}\] | 2 × 47 × 1103 × 10749957121<11> |
| 73: | \[L_{73}\] | 151549 × 11899937029<11> |
| 74: | \[L_{74}\] | 3 × 11987 × 81143477963<11> |
| 75: | \[L_{75}\] | 22 × 11 × 31 × 101 × 151 × 12301 × 18451 |
| 76: | \[L_{76}\] | 7 × 1091346396980401<16> |
| 77: | \[L_{77}\] | 29 × 199 × 229769 × 9321929 |
| 78: | \[L_{78}\] | 2 × 32 × 90481 × 12280217041<11> |
| 79: | \[L_{79}\] | 32361122672259149<17> |
| 80: | \[L_{80}\] | 2207 × 23725145626561<14> |
| 81: | \[L_{81}\] | 22 × 19 × 3079 × 5779 × 62650261 |
| 82: | \[L_{82}\] | 3 × 163 × 800483 × 350207569 |
| 83: | \[L_{83}\] | 35761381 × 6202401259<10> |
| 84: | \[L_{84}\] | 2 × 72 × 23 × 167 × 14503 × 65740583 |
| 85: | \[L_{85}\] | 11 × 3571 × 1158551 × 12760031 |
| 86: | \[L_{86}\] | 3 × 313195711516578281<18> |
| 87: | \[L_{87}\] | 22 × 59 × 349 × 19489 × 947104099 |
| 88: | \[L_{88}\] | 47 × 93058241 × 562418561 |
| 89: | \[L_{89}\] | 179 × 22235502640988369<17> |
| 90: | \[L_{90}\] | 2 × 33 × 41 × 107 × 2521 × 10783342081<11> |
| 91: | \[L_{91}\] | 29 × 521 × 689667151970161<15> |
| 92: | \[L_{92}\] | 7 × 253367 × 9506372193863<13> |
| 93: | \[L_{93}\] | 22 × 63799 × 3010349 × 35510749 |
| 94: | \[L_{94}\] | 3 × 563 × 5641 × 4632894751907<13> |
| 95: | \[L_{95}\] | 11 × 191 × 9349 × 41611 × 87382901 |
| 96: | \[L_{96}\] | 2 × 1087 × 4481 × 11862575248703<14> |
| 97: | \[L_{97}\] | 3299 × 56678557502141579<17> |
| 98: | \[L_{98}\] | 3 × 281 × 5881 × 61025309469041<14> |
| 99: | \[L_{99}\] | 22 × 19 × 199 × 991 × 2179 × 9901 × 1513909 |
Index range: 0 – 99 next >>