tables > lucas

Lucas Sequence

Table

Viewing: 0 – 99 next >>

(available: 0-4999)

Format: small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>

0: \[L_{0}\] 2
1: \[L_{1}\] 1
2: \[L_{2}\] 3
3: \[L_{3}\] 22
4: \[L_{4}\] 7
5: \[L_{5}\] 11
6: \[L_{6}\] 2 × 32
7: \[L_{7}\] 29
8: \[L_{8}\] 47
9: \[L_{9}\] 22 × 19
10: \[L_{10}\] 3 × 41
11: \[L_{11}\] 199
12: \[L_{12}\] 2 × 7 × 23
13: \[L_{13}\] 521
14: \[L_{14}\] 3 × 281
15: \[L_{15}\] 22 × 11 × 31
16: \[L_{16}\] 2207
17: \[L_{17}\] 3571
18: \[L_{18}\] 2 × 33 × 107
19: \[L_{19}\] 9349
20: \[L_{20}\] 7 × 2161
21: \[L_{21}\] 22 × 29 × 211
22: \[L_{22}\] 3 × 43 × 307
23: \[L_{23}\] 139 × 461
24: \[L_{24}\] 2 × 47 × 1103
25: \[L_{25}\] 11 × 101 × 151
26: \[L_{26}\] 3 × 90481
27: \[L_{27}\] 22 × 19 × 5779
28: \[L_{28}\] 72 × 14503
29: \[L_{29}\] 59 × 19489
30: \[L_{30}\] 2 × 32 × 41 × 2521
31: \[L_{31}\] 3010349
32: \[L_{32}\] 1087 × 4481
33: \[L_{33}\] 22 × 199 × 9901
34: \[L_{34}\] 3 × 67 × 63443
35: \[L_{35}\] 11 × 29 × 71 × 911
36: \[L_{36}\] 2 × 7 × 23 × 103681
37: \[L_{37}\] 54018521
38: \[L_{38}\] 3 × 29134601
39: \[L_{39}\] 22 × 79 × 521 × 859
40: \[L_{40}\] 47 × 1601 × 3041
41: \[L_{41}\] 370248451
42: \[L_{42}\] 2 × 32 × 83 × 281 × 1427
43: \[L_{43}\] 6709 × 144481
44: \[L_{44}\] 7 × 263 × 881 × 967
45: \[L_{45}\] 22 × 11 × 19 × 31 × 181 × 541
46: \[L_{46}\] 3 × 4969 × 275449
47: \[L_{47}\] 6643838879<10>
48: \[L_{48}\] 2 × 769 × 2207 × 3167
49: \[L_{49}\] 29 × 599786069
50: \[L_{50}\] 3 × 41 × 401 × 570601
51: \[L_{51}\] 22 × 919 × 3469 × 3571
52: \[L_{52}\] 7 × 103 × 102193207
53: \[L_{53}\] 119218851371<12>
54: \[L_{54}\] 2 × 34 × 107 × 11128427
55: \[L_{55}\] 112 × 199 × 331 × 39161
56: \[L_{56}\] 47 × 10745088481<11>
57: \[L_{57}\] 22 × 229 × 9349 × 95419
58: \[L_{58}\] 3 × 347 × 1270083883
59: \[L_{59}\] 709 × 8969 × 336419
60: \[L_{60}\] 2 × 7 × 23 × 241 × 2161 × 20641
61: \[L_{61}\] 5600748293801<13>
62: \[L_{62}\] 3 × 3020733700601<13>
63: \[L_{63}\] 22 × 19 × 29 × 211 × 1009 × 31249
64: \[L_{64}\] 127 × 186812208641<12>
65: \[L_{65}\] 11 × 131 × 521 × 2081 × 24571
66: \[L_{66}\] 2 × 32 × 43 × 307 × 261399601
67: \[L_{67}\] 4021 × 24994118449<11>
68: \[L_{68}\] 7 × 23230657239121<14>
69: \[L_{69}\] 22 × 139 × 461 × 691 × 1485571
70: \[L_{70}\] 3 × 41 × 281 × 12317523121<11>
71: \[L_{71}\] 688846502588399<15>
72: \[L_{72}\] 2 × 47 × 1103 × 10749957121<11>
73: \[L_{73}\] 151549 × 11899937029<11>
74: \[L_{74}\] 3 × 11987 × 81143477963<11>
75: \[L_{75}\] 22 × 11 × 31 × 101 × 151 × 12301 × 18451
76: \[L_{76}\] 7 × 1091346396980401<16>
77: \[L_{77}\] 29 × 199 × 229769 × 9321929
78: \[L_{78}\] 2 × 32 × 90481 × 12280217041<11>
79: \[L_{79}\] 32361122672259149<17>
80: \[L_{80}\] 2207 × 23725145626561<14>
81: \[L_{81}\] 22 × 19 × 3079 × 5779 × 62650261
82: \[L_{82}\] 3 × 163 × 800483 × 350207569
83: \[L_{83}\] 35761381 × 6202401259<10>
84: \[L_{84}\] 2 × 72 × 23 × 167 × 14503 × 65740583
85: \[L_{85}\] 11 × 3571 × 1158551 × 12760031
86: \[L_{86}\] 3 × 313195711516578281<18>
87: \[L_{87}\] 22 × 59 × 349 × 19489 × 947104099
88: \[L_{88}\] 47 × 93058241 × 562418561
89: \[L_{89}\] 179 × 22235502640988369<17>
90: \[L_{90}\] 2 × 33 × 41 × 107 × 2521 × 10783342081<11>
91: \[L_{91}\] 29 × 521 × 689667151970161<15>
92: \[L_{92}\] 7 × 253367 × 9506372193863<13>
93: \[L_{93}\] 22 × 63799 × 3010349 × 35510749
94: \[L_{94}\] 3 × 563 × 5641 × 4632894751907<13>
95: \[L_{95}\] 11 × 191 × 9349 × 41611 × 87382901
96: \[L_{96}\] 2 × 1087 × 4481 × 11862575248703<14>
97: \[L_{97}\] 3299 × 56678557502141579<17>
98: \[L_{98}\] 3 × 281 × 5881 × 61025309469041<14>
99: \[L_{99}\] 22 × 19 × 199 × 991 × 2179 × 9901 × 1513909

Index range: 0 – 99 next >>