tables > nrr > 7 > 2

Patterns Starting With 2

Patterns that can be factored: \[[2^*02^*_7]_n={7\cdot7^{2n}-6\cdot7^{n}-1\over3}=\left(7^{n}-1\right)\left(7\cdot7^{n}+1\right)/3=\left(6\cdot[1^*_7]_n\right)\left(2\cdot[3^*4_7]_n\right)/3\] \[[2^*42^*_7]_n={7\cdot7^{2n}+6\cdot7^{n}-1\over3}=\left(7^{n}+1\right)\left(7\cdot7^{n}-1\right)/3=\left(2\cdot[3^*4_7]_{n-1}\right)\left(6\cdot[1^*_7]_{n+1}\right)/3\]

Links

> 20003: Quasi Repdigit 200..003 (table) > 20005: Quasi Repdigit 200..005 (table) > 21111: Near Repdigit 211..11 (table) > 21112: Depression 211..112 (table) > 21113: Quasi Repdigit 211..113 (table) > 21114: Quasi Repdigit 211..114 (table) > 21115: Quasi Repdigit 211..115 (table) > 21116: Quasi Repdigit 211..116 (table) > 21222: Near Repdigit 2122..22 (table) > 22122: Near Repdigit Palindrome 22..22122..22 (table) > 22212: Near Repdigit 22..2212 (table) > 22221: Near Repdigit 22..221 (table) > 22223: Near Repdigit 22..223 (table) > 22225: Near Repdigit 22..225 (table) > 22232: Near Repdigit 22..2232 (table) > 22252: Near Repdigit 22..2252 (table) > 22322: Near Repdigit Palindrome 22..22322..22 (table) > 22522: Near Repdigit Palindrome 22..22522..22 (table) > 23222: Near Repdigit 2322..22 (table) > 23332: Plateau 233..332 (table) > 23333: Near Repdigit 233..33 (table) > 23335: Quasi Repdigit 233..335 (table) > 24441: Quasi Repdigit 244..441 (table) > 24443: Quasi Repdigit 244..443 (table) > 24445: Quasi Repdigit 244..445 (table) > 25222: Near Repdigit 2522..22 (table) > 25551: Quasi Repdigit 255..551 (table) > 25552: Plateau 255..552 (table) > 25554: Quasi Repdigit 255..554 (table) > 25555: Near Repdigit 255..55 (table) > 25556: Quasi Repdigit 255..556 (table) > 26663: Quasi Repdigit 266..663 (table) > 26665: Quasi Repdigit 266..665 (table)