tables > nrr > 7 > 3

Patterns Starting With 3

Patterns that can be factored: \[[3^*03^*_7]_n={7\cdot7^{2n}-6\cdot7^{n}-1\over2}=\left(7^{n}-1\right)\left(7\cdot7^{n}+1\right)/2=\left(6\cdot[1^*_7]_n\right)\left(2\cdot[3^*4_7]_n\right)/2\] \[[3^*63^*_7]_n={7\cdot7^{2n}+6\cdot7^{n}-1\over2}=\left(7^{n}+1\right)\left(7\cdot7^{n}-1\right)/2=\left(2\cdot[3^*4_7]_{n-1}\right)\left(6\cdot[1^*_7]_{n+1}\right)/2\]

Links

> 30002: Quasi Repdigit 300..002 (table) > 30004: Quasi Repdigit 300..004 (table) > 31111: Near Repdigit 311..11 (table) > 31112: Quasi Repdigit 311..112 (table) > 31113: Depression 311..113 (table) > 31114: Quasi Repdigit 311..114 (table) > 31115: Quasi Repdigit 311..115 (table) > 31116: Quasi Repdigit 311..116 (table) > 31333: Near Repdigit 3133..33 (table) > 32222: Near Repdigit 322..22 (table) > 32226: Quasi Repdigit 322..226 (table) > 32333: Near Repdigit 3233..33 (table) > 33133: Near Repdigit Palindrome 33..33133..33 (table) > 33233: Near Repdigit Palindrome 33..33233..33 (table) > 33313: Near Repdigit 33..3313 (table) > 33323: Near Repdigit 33..3323 (table) > 33331: Near Repdigit 33..331 (table) > 33332: Near Repdigit 33..332 (table) > 33334: Near Repdigit 33..334 (table) > 33335: Near Repdigit 33..335 (table) > 33343: Near Repdigit 33..3343 (table) > 33353: Near Repdigit 33..3353 (table) > 33433: Near Repdigit Palindrome 33..33433..33 (table) > 33533: Near Repdigit Palindrome 33..33533..33 (table) > 34333: Near Repdigit 3433..33 (table) > 34442: Quasi Repdigit 344..442 (table) > 34444: Near Repdigit 344..44 (table) > 34446: Quasi Repdigit 344..446 (table) > 35333: Near Repdigit 3533..33 (table) > 35551: Quasi Repdigit 355..551 (table) > 35553: Plateau 355..553 (table) > 35554: Quasi Repdigit 355..554 (table) > 35555: Near Repdigit 355..55 (table) > 35556: Quasi Repdigit 355..556 (table) > 36662: Quasi Repdigit 366..662 (table) > 36664: Quasi Repdigit 366..664 (table)