tables > nrr > 7 > 4

Patterns Starting With 4

Patterns that can be factored: \[[4^*04^*_7]_n=2\cdot{7\cdot7^{2n}-6\cdot7^{n}-1\over3}=2\cdot\left(7^{n}-1\right)\left(7\cdot7^{n}+1\right)/3=2\cdot\left(6\cdot[1^*_7]_n\right)\left(2\cdot[3^*4_7]_n\right)/3\] \[[4^*34^*_7]_n={14\cdot7^{2n}-3\cdot7^{n}-2\over3}=\left(2\cdot7^{n}-1\right)\left(7\cdot7^{n}+2\right)/3=\left([16^*_7]_n\right)\left(3\cdot[2^*3_7]_n\right)/3\] \[[4^*54^*_7]_n={14\cdot7^{2n}+3\cdot7^{n}-2\over3}=\left(2\cdot7^{n}+1\right)\left(7\cdot7^{n}-2\right)/3=\left(3\cdot[4^*5_7]_{n-1}\right)\left([6^*5_7]_n\right)/3\]

Links

> 40001: Quasi Repdigit 400..001 (table) > 40003: Quasi Repdigit 400..003 (table) > 41111: Near Repdigit 411..11 (table) > 41113: Quasi Repdigit 411..113 (table) > 41114: Depression 411..114 (table) > 41115: Quasi Repdigit 411..115 (table) > 41116: Quasi Repdigit 411..116 (table) > 41444: Near Repdigit 4144..44 (table) > 42221: Quasi Repdigit 422..221 (table) > 42223: Quasi Repdigit 422..223 (table) > 42225: Quasi Repdigit 422..225 (table) > 43331: Quasi Repdigit 433..331 (table) > 43333: Near Repdigit 433..33 (table) > 43334: Depression 433..334 (table) > 43336: Quasi Repdigit 433..336 (table) > 43444: Near Repdigit 4344..44 (table) > 44144: Near Repdigit Palindrome 44..44144..44 (table) > 44414: Near Repdigit 44..4414 (table) > 44434: Near Repdigit 44..4434 (table) > 44441: Near Repdigit 44..441 (table) > 44443: Near Repdigit 44..443 (table) > 44445: Near Repdigit 44..445 (table) > 44454: Near Repdigit 44..4454 (table) > 45444: Near Repdigit 4544..44 (table) > 45552: Quasi Repdigit 455..552 (table) > 45553: Quasi Repdigit 455..553 (table) > 45554: Plateau 455..554 (table) > 45555: Near Repdigit 455..55 (table) > 45556: Quasi Repdigit 455..556 (table) > 46661: Quasi Repdigit 466..661 (table) > 46663: Quasi Repdigit 466..663 (table)