tables > nrr > 7 > 6

Patterns Starting With 6

Patterns that can be factored: \[[6^*06^*_7]_n=7\cdot7^{2n}-6\cdot7^{n}-1=\left(7^{n}-1\right)\left(7\cdot7^{n}+1\right)=\left(6\cdot[1^*_7]_n\right)\left(2\cdot[3^*4_7]_n\right)\]

Links

> 60001: Quasi Repdigit 600..001 (table) > 60005: Quasi Repdigit 600..005 (table) > 61111: Near Repdigit 611..11 (table) > 61112: Quasi Repdigit 611..112 (table) > 61113: Quasi Repdigit 611..113 (table) > 61114: Quasi Repdigit 611..114 (table) > 61115: Quasi Repdigit 611..115 (table) > 61116: Depression 611..116 (table) > 61666: Near Repdigit 6166..66 (table) > 62221: Quasi Repdigit 622..221 (table) > 62223: Quasi Repdigit 622..223 (table) > 62225: Quasi Repdigit 622..225 (table) > 63331: Quasi Repdigit 633..331 (table) > 63332: Quasi Repdigit 633..332 (table) > 63334: Quasi Repdigit 633..334 (table) > 63335: Quasi Repdigit 633..335 (table) > 64441: Quasi Repdigit 644..441 (table) > 64445: Quasi Repdigit 644..445 (table) > 65551: Quasi Repdigit 655..551 (table) > 65552: Quasi Repdigit 655..552 (table) > 65553: Quasi Repdigit 655..553 (table) > 65554: Quasi Repdigit 655..554 (table) > 65555: Near Repdigit 655..55 (table) > 65556: Depression 655..556 (table) > 65666: Near Repdigit 6566..66 (table) > 66166: Near Repdigit Palindrome 66..66166..66 (table) > 66566: Near Repdigit Palindrome 66..66566..66 (table) > 66616: Near Repdigit 66..6616 (table) > 66656: Near Repdigit 66..6656 (table) > 66661: Near Repdigit 66..661 (table) > 66665: Near Repdigit 66..665 (table)