Base 4 Repunits
Table
Viewing: 0 – 99 next >>
Format: small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>
0: | \[{4^{0}-1\over3}\] | 0 |
1: | \[{4^{1}-1\over3}\] | 1 |
2: | \[{4^{2}-1\over3}\] | 5 |
3: | \[{4^{3}-1\over3}\] | 3 × 7 |
4: | \[{4^{4}-1\over3}\] | 5 × 17 |
5: | \[{4^{5}-1\over3}\] | 11 × 31 |
6: | \[{4^{6}-1\over3}\] | 3 × 5 × 7 × 13 |
7: | \[{4^{7}-1\over3}\] | 43 × 127 |
8: | \[{4^{8}-1\over3}\] | 5 × 17 × 257 |
9: | \[{4^{9}-1\over3}\] | 32 × 7 × 19 × 73 |
10: | \[{4^{10}-1\over3}\] | 52 × 11 × 31 × 41 |
11: | \[{4^{11}-1\over3}\] | 23 × 89 × 683 |
12: | \[{4^{12}-1\over3}\] | 3 × 5 × 7 × 13 × 17 × 241 |
13: | \[{4^{13}-1\over3}\] | 2731 × 8191 |
14: | \[{4^{14}-1\over3}\] | 5 × 29 × 43 × 113 × 127 |
15: | \[{4^{15}-1\over3}\] | 3 × 7 × 11 × 31 × 151 × 331 |
16: | \[{4^{16}-1\over3}\] | 5 × 17 × 257 × 65537 |
17: | \[{4^{17}-1\over3}\] | 43691 × 131071 |
18: | \[{4^{18}-1\over3}\] | 32 × 5 × 7 × 13 × 19 × 37 × 73 × 109 |
19: | \[{4^{19}-1\over3}\] | 174763 × 524287 |
20: | \[{4^{20}-1\over3}\] | 52 × 11 × 17 × 31 × 41 × 61681 |
21: | \[{4^{21}-1\over3}\] | 3 × 72 × 43 × 127 × 337 × 5419 |
22: | \[{4^{22}-1\over3}\] | 5 × 23 × 89 × 397 × 683 × 2113 |
23: | \[{4^{23}-1\over3}\] | 47 × 178481 × 2796203 |
24: | \[{4^{24}-1\over3}\] | 3 × 5 × 7 × 13 × 17 × 97 × 241 × 257 × 673 |
25: | \[{4^{25}-1\over3}\] | 11 × 31 × 251 × 601 × 1801 × 4051 |
26: | \[{4^{26}-1\over3}\] | 5 × 53 × 157 × 1613 × 2731 × 8191 |
27: | \[{4^{27}-1\over3}\] | 33 × 7 × 19 × 73 × 87211 × 262657 |
28: | \[{4^{28}-1\over3}\] | 5 × 17 × 29 × 43 × 113 × 127 × 15790321 |
29: | \[{4^{29}-1\over3}\] | 59 × 233 × 1103 × 2089 × 3033169 |
30: | \[{4^{30}-1\over3}\] | 3 × 52 × 7 × 11 × 13 × 31 × 41 × 61 × 151 × 331 × 1321 |
31: | \[{4^{31}-1\over3}\] | 715827883 × 2147483647 |
32: | \[{4^{32}-1\over3}\] | 5 × 17 × 257 × 641 × 65537 × 6700417 |
33: | \[{4^{33}-1\over3}\] | 3 × 7 × 23 × 67 × 89 × 683 × 20857 × 599479 |
34: | \[{4^{34}-1\over3}\] | 5 × 137 × 953 × 26317 × 43691 × 131071 |
35: | \[{4^{35}-1\over3}\] | 11 × 31 × 43 × 71 × 127 × 281 × 86171 × 122921 |
36: | \[{4^{36}-1\over3}\] | 32 × 5 × 7 × 13 × 17 × 19 × 37 × 73 × 109 × 241 × 433 × 38737 |
37: | \[{4^{37}-1\over3}\] | 223 × 1777 × 25781083 × 616318177 |
38: | \[{4^{38}-1\over3}\] | 5 × 229 × 457 × 174763 × 524287 × 525313 |
39: | \[{4^{39}-1\over3}\] | 3 × 7 × 79 × 2731 × 8191 × 121369 × 22366891 |
40: | \[{4^{40}-1\over3}\] | 52 × 11 × 17 × 31 × 41 × 257 × 61681 × 4278255361 |
41: | \[{4^{41}-1\over3}\] | 83 × 13367 × 164511353 × 8831418697<10> |
42: | \[{4^{42}-1\over3}\] | 3 × 5 × 72 × 13 × 29 × 43 × 113 × 127 × 337 × 1429 × 5419 × 14449 |
43: | \[{4^{43}-1\over3}\] | 431 × 9719 × 2099863 × 2932031007403<13> |
44: | \[{4^{44}-1\over3}\] | 5 × 17 × 23 × 89 × 353 × 397 × 683 × 2113 × 2931542417 |
45: | \[{4^{45}-1\over3}\] | 32 × 7 × 11 × 19 × 31 × 73 × 151 × 331 × 631 × 23311 × 18837001 |
46: | \[{4^{46}-1\over3}\] | 5 × 47 × 277 × 1013 × 1657 × 30269 × 178481 × 2796203 |
47: | \[{4^{47}-1\over3}\] | 283 × 2351 × 4513 × 13264529 × 165768537521<12> |
48: | \[{4^{48}-1\over3}\] | 3 × 5 × 7 × 13 × 17 × 97 × 193 × 241 × 257 × 673 × 65537 × 22253377 |
49: | \[{4^{49}-1\over3}\] | 43 × 127 × 4363953127297<13> × 4432676798593<13> |
50: | \[{4^{50}-1\over3}\] | 53 × 11 × 31 × 41 × 101 × 251 × 601 × 1801 × 4051 × 8101 × 268501 |
51: | \[{4^{51}-1\over3}\] | 3 × 7 × 103 × 307 × 2143 × 2857 × 6529 × 11119 × 43691 × 131071 |
52: | \[{4^{52}-1\over3}\] | 5 × 17 × 53 × 157 × 1613 × 2731 × 8191 × 858001 × 308761441 |
53: | \[{4^{53}-1\over3}\] | 107 × 6361 × 69431 × 20394401 × 28059810762433<14> |
54: | \[{4^{54}-1\over3}\] | 33 × 5 × 7 × 13 × 19 × 37 × 73 × 109 × 87211 × 246241 × 262657 × 279073 |
55: | \[{4^{55}-1\over3}\] | 112 × 23 × 31 × 89 × 683 × 881 × 2971 × 3191 × 201961 × 48912491 |
56: | \[{4^{56}-1\over3}\] | 5 × 17 × 29 × 43 × 113 × 127 × 257 × 5153 × 15790321 × 54410972897<11> |
57: | \[{4^{57}-1\over3}\] | 3 × 7 × 571 × 32377 × 174763 × 524287 × 1212847 × 160465489 |
58: | \[{4^{58}-1\over3}\] | 5 × 59 × 233 × 1103 × 2089 × 3033169 × 107367629 × 536903681 |
59: | \[{4^{59}-1\over3}\] | 2833 × 37171 × 179951 × 1824726041 × 3203431780337<13> |
60: | \[{4^{60}-1\over3}\] | 3 × 52 × 7 × 11 × 13 × 17 × 31 × 41 × 61 × 151 × 241 × 331 × 1321 × 61681 × 4562284561<10> |
61: | \[{4^{61}-1\over3}\] | 768614336404564651<18> × 2305843009213693951<19> |
62: | \[{4^{62}-1\over3}\] | 5 × 5581 × 8681 × 49477 × 384773 × 715827883 × 2147483647 |
63: | \[{4^{63}-1\over3}\] | 32 × 72 × 19 × 43 × 73 × 127 × 337 × 5419 × 92737 × 649657 × 77158673929<11> |
64: | \[{4^{64}-1\over3}\] | 5 × 17 × 257 × 641 × 65537 × 274177 × 6700417 × 67280421310721<14> |
65: | \[{4^{65}-1\over3}\] | 11 × 31 × 131 × 2731 × 8191 × 409891 × 7623851 × 145295143558111<15> |
66: | \[{4^{66}-1\over3}\] | 3 × 5 × 7 × 13 × 23 × 67 × 89 × 397 × 683 × 2113 × 20857 × 312709 × 599479 × 4327489 |
67: | \[{4^{67}-1\over3}\] | 7327657 × 193707721 × 761838257287<12> × 6713103182899<13> |
68: | \[{4^{68}-1\over3}\] | 5 × 172 × 137 × 953 × 26317 × 43691 × 131071 × 354689 × 2879347902817<13> |
69: | \[{4^{69}-1\over3}\] | 3 × 7 × 47 × 139 × 178481 × 2796203 × 168749965921<12> × 10052678938039<14> |
70: | \[{4^{70}-1\over3}\] | 52 × 11 × 29 × 31 × 41 × 43 × 71 × 113 × 127 × 281 × 86171 × 122921 × 7416361 × 47392381 |
71: | \[{4^{71}-1\over3}\] | 228479 × 48544121 × 56409643 × 212885833 × 13952598148481<14> |
72: | \[{4^{72}-1\over3}\] | 32 × 5 × 7 × 13 × 17 × 19 × 37 × 73 × 97 × 109 × 241 × 257 × 433 × 577 × 673 × 38737 × 487824887233<12> |
73: | \[{4^{73}-1\over3}\] | 439 × 1753 × 2298041 × 9361973132609<13> × 1795918038741070627<19> |
74: | \[{4^{74}-1\over3}\] | 5 × 149 × 223 × 593 × 1777 × 25781083 × 184481113 × 231769777 × 616318177 |
75: | \[{4^{75}-1\over3}\] | 3 × 7 × 11 × 31 × 151 × 251 × 331 × 601 × 1801 × 4051 × 100801 × 10567201 × 1133836730401<13> |
76: | \[{4^{76}-1\over3}\] | 5 × 17 × 229 × 457 × 1217 × 148961 × 174763 × 524287 × 525313 × 24517014940753<14> |
77: | \[{4^{77}-1\over3}\] | 23 × 43 × 89 × 127 × 617 × 683 × 78233 × 35532364099<11> × 581283643249112959<18> |
78: | \[{4^{78}-1\over3}\] | 3 × 5 × 7 × 132 × 53 × 79 × 157 × 313 × 1249 × 1613 × 2731 × 3121 × 8191 × 21841 × 121369 × 22366891 |
79: | \[{4^{79}-1\over3}\] | 2687 × 202029703 × 1113491139767<13> × 201487636602438195784363<24> |
80: | \[{4^{80}-1\over3}\] | 52 × 11 × 17 × 31 × 41 × 257 × 61681 × 65537 × 414721 × 4278255361 × 44479210368001<14> |
81: | \[{4^{81}-1\over3}\] | 34 × 7 × 19 × 73 × 163 × 2593 × 71119 × 87211 × 135433 × 262657 × 97685839 × 272010961 |
82: | \[{4^{82}-1\over3}\] | 5 × 83 × 10169 × 13367 × 181549 × 12112549 × 43249589 × 164511353 × 8831418697<10> |
83: | \[{4^{83}-1\over3}\] | 167 × 499 × 1163 × 2657 × 155377 × 13455809771<11> × 57912614113275649087721<23> |
84: | \[{4^{84}-1\over3}\] | 3 × 5 × 72 × 13 × 17 × 29 × 43 × 113 × 127 × 241 × 337 × 1429 × 3361 × 5419 × 14449 × 15790321 × 88959882481<11> |
85: | \[{4^{85}-1\over3}\] | 11 × 31 × 43691 × 131071 × 9520972806333758431<19> × 26831423036065352611<20> |
86: | \[{4^{86}-1\over3}\] | 5 × 173 × 431 × 9719 × 101653 × 500177 × 2099863 × 1759217765581<13> × 2932031007403<13> |
87: | \[{4^{87}-1\over3}\] | 3 × 7 × 59 × 233 × 1103 × 2089 × 4177 × 3033169 × 9857737155463<13> × 96076791871613611<17> |
88: | \[{4^{88}-1\over3}\] | 5 × 17 × 23 × 89 × 257 × 353 × 397 × 683 × 2113 × 229153 × 119782433 × 2931542417 × 43872038849<11> |
89: | \[{4^{89}-1\over3}\] | 179 × 62020897 × 18584774046020617<17> × 618970019642690137449562111<27> |
90: | \[{4^{90}-1\over3}\] | 32 × 52 × 7 × 11 × 13 × 19 × 31 × 37 × 41 × 61 × 73 × 109 × 151 × 181 × 331 × 631 × 1321 × 23311 × 54001 × 18837001 × 29247661 |
91: | \[{4^{91}-1\over3}\] | 43 × 127 × 911 × 2731 × 8191 × 224771 × 1210483 × 112901153 × 23140471537<11> × 25829691707<11> |
92: | \[{4^{92}-1\over3}\] | 5 × 17 × 47 × 277 × 1013 × 1657 × 30269 × 178481 × 2796203 × 291280009243618888211558641<27> |
93: | \[{4^{93}-1\over3}\] | 3 × 7 × 529510939 × 715827883 × 2147483647 × 2903110321 × 658812288653553079<18> |
94: | \[{4^{94}-1\over3}\] | 5 × 283 × 2351 × 3761 × 4513 × 13264529 × 7484047069<10> × 165768537521<12> × 140737471578113<15> |
95: | \[{4^{95}-1\over3}\] | 11 × 31 × 191 × 2281 × 174763 × 524287 × 420778751 × 30327152671<11> × 3011347479614249131<19> |
96: | \[{4^{96}-1\over3}\] | 3 × 5 × 7 × 13 × 17 × 97 × 193 × 241 × 257 × 641 × 673 × 65537 × 6700417 × 22253377 × 18446744069414584321<20> |
97: | \[{4^{97}-1\over3}\] | 971 × 1553 × 11447 × 31817 × 1100876018364883721<19> × 13842607235828485645766393<26> |
98: | \[{4^{98}-1\over3}\] | 5 × 29 × 43 × 113 × 127 × 197 × 19707683773<11> × 4363953127297<13> × 4432676798593<13> × 4981857697937<13> |
99: | \[{4^{99}-1\over3}\] | 32 × 7 × 19 × 23 × 67 × 73 × 89 × 199 × 683 × 5347 × 20857 × 153649 × 599479 × 33057806959<11> × 242099935645987<15> |
Index range: 0 – 99 next >>