tables > nrr > 10 > 1 > 16667

16667: Quasi Repdigit 166..667

First few terms (base 10): \[[16^*7_{10}]_n=\{17,167,1667,16667,166667,\ldots\}\]

General Formula:\[[16^*7_{10}]_n={50\cdot10^{n}+1\over3}\]

Equivalent Patterns: \[[50^*1_{10}]_n=3\cdot[16^*7_{10}]_n\] \[[3^*4_{10}]_n=2\cdot[16^*7_{10}]_{n-1}\] \[[10^*2_{10}]_n=6\cdot[16^*7_{10}]_{n-1}\] \[[6^*8_{10}]_n=4\cdot[16^*7_{10}]_{n-1}\] \[[20^*4_{10}]_n=12\cdot[16^*7_{10}]_{n-1}\] \[[83^*5_{10}]_n=5\cdot[16^*7_{10}]_n\] \[[30^*6_{10}]_n=18\cdot[16^*7_{10}]_{n-1}\] \[[13^*6_{10}]_n=8\cdot[16^*7_{10}]_{n-1}\] \[[40^*8_{10}]_n=24\cdot[16^*7_{10}]_{n-1}\] \[[23^*8_{10}]_n=14\cdot[16^*7_{10}]_{n-1}\]

See Also: Factorization of 166..667 on stdkmd.net

Table

Viewing: 0 – 99 return

(available: none)

No table data.