tables > nrr > 10 > 3 > 38889

38889: Quasi Repdigit 388..889

First few terms (base 10): \[[38^*9_{10}]_n=\{39,389,3889,38889,388889,\ldots\}\]

General Formula:\[[38^*9_{10}]_n={350\cdot10^{n}+1\over9}\]

Equivalent Patterns: \[[7^*8_{10}]_n=2\cdot[38^*9_{10}]_{n-1}\] \[[23^*4_{10}]_n=6\cdot[38^*9_{10}]_{n-1}\] \[[70^*2_{10}]_n=18\cdot[38^*9_{10}]_{n-1}\] \[[15^*6_{10}]_n=4\cdot[38^*9_{10}]_{n-1}\] \[[46^*8_{10}]_n=12\cdot[38^*9_{10}]_{n-1}\] \[[31^*2_{10}]_n=8\cdot[38^*9_{10}]_{n-1}\] \[[93^*6_{10}]_n=24\cdot[38^*9_{10}]_{n-1}\] \[[54^*6_{10}]_n=14\cdot[38^*9_{10}]_{n-1}\] \[[62^*4_{10}]_n=16\cdot[38^*9_{10}]_{n-1}\] \[[85^*8_{10}]_n=22\cdot[38^*9_{10}]_{n-1}\]

See Also: Factorization of 388..889 on stdkmd.net

Table

Viewing: 0 – 99 return

(available: none)

No table data.