tables > nrr > 10 > 6 > 66667

66667: Near Repdigit 66..667

First few terms (base 10): \[[6^*7_{10}]_n=\{7,67,667,6667,66667,\ldots\}\]

General Formula:\[[6^*7_{10}]_n={20\cdot10^{n}+1\over3}\]

Equivalent Patterns: \[[20^*1_{10}]_n=3\cdot[6^*7_{10}]_n\] \[[60^*3_{10}]_n=9\cdot[6^*7_{10}]_n\] \[[46^*9_{10}]_n=7\cdot[6^*7_{10}]_n\] \[[73^*7_{10}]_n=11\cdot[6^*7_{10}]_n\] \[[13^*4_{10}]_n=2\cdot[6^*7_{10}]_n\] \[[40^*2_{10}]_n=6\cdot[6^*7_{10}]_n\] \[[26^*8_{10}]_n=4\cdot[6^*7_{10}]_n\] \[[80^*4_{10}]_n=12\cdot[6^*7_{10}]_n\] \[[3^*5_{10}]_n=5\cdot[6^*7_{10}]_{n-1}\] \[[10^*5_{10}]_n=15\cdot[6^*7_{10}]_{n-1}\] \[[53^*6_{10}]_n=8\cdot[6^*7_{10}]_n\] \[[93^*8_{10}]_n=14\cdot[6^*7_{10}]_n\]

See Also: Factorization of 66..667 on stdkmd.net

Table

Viewing: 0 – 99 return

(available: none)

No table data.