88889: Near Repdigit 88..889
First few terms (base 10): \[[8^*9_{10}]_n=\{9,89,889,8889,88889,\ldots\}\]
General Formula:\[[8^*9_{10}]_n={80\cdot10^{n}+1\over9}\]
Equivalent Patterns: \[[26^*7_{10}]_n=3\cdot[8^*9_{10}]_n\] \[[80^*1_{10}]_n=9\cdot[8^*9_{10}]_n\] \[[62^*3_{10}]_n=7\cdot[8^*9_{10}]_n\] \[[97^*9_{10}]_n=11\cdot[8^*9_{10}]_n\] \[[17^*8_{10}]_n=2\cdot[8^*9_{10}]_n\] \[[53^*4_{10}]_n=6\cdot[8^*9_{10}]_n\] \[[35^*6_{10}]_n=4\cdot[8^*9_{10}]_n\] \[[2^*5_{10}]_n=25\cdot[8^*9_{10}]_{n-2}\] \[[4^*5_{10}]_n=5\cdot[8^*9_{10}]_{n-1}\] \[[13^*5_{10}]_n=15\cdot[8^*9_{10}]_{n-1}\] \[[40^*5_{10}]_n=45\cdot[8^*9_{10}]_{n-1}\] \[[71^*2_{10}]_n=8\cdot[8^*9_{10}]_n\] \[[31^*5_{10}]_n=35\cdot[8^*9_{10}]_{n-1}\]
See Also: Factorization of 88..889 on stdkmd.net
Table
Viewing: 0 – 99 return
No table data.