17778: Quasi Repdigit 177..778
First few terms (base 10): \[[17^*8_9]_n=\{17,152,1367,12302,110717,\ldots\}\]
First few terms (base 9): \[\{\text{18},\text{178},\text{1778},\text{17778},\text{177778},\ldots\}\]
General Formula:\[[17^*8_9]_n={135\cdot9^{n}+1\over8}\]
Equivalent Patterns: \[[36^*7_9]_n=2\cdot[17^*8_9]_n\] \[[74^*5_9]_n=4\cdot[17^*8_9]_n\] \[[5^*6_9]_n=3\cdot[17^*8_9]_{n-1}\] \[[12^*3_9]_n=6\cdot[17^*8_9]_{n-1}\] \[[24^*6_9]_n=12\cdot[17^*8_9]_{n-1}\] \[[50^*3_9]_n=24\cdot[17^*8_9]_{n-1}\] \[[31^*3_9]_n=15\cdot[17^*8_9]_{n-1}\] \[[62^*6_9]_n=30\cdot[17^*8_9]_{n-1}\] \[[43^*6_9]_n=21\cdot[17^*8_9]_{n-1}\] \[[81^*6_9]_n=39\cdot[17^*8_9]_{n-1}\]
Table
Viewing: 0 – 99 return
No table data.