Base 2 Repunits
Table
Viewing: 0 – 99 next >>
Format: small prime × proven prime<size> × (probable prime)<size> × [composite]<size> × {unknown}<size>
| 0: | \[2^{0}-1\] | 0 |
| 1: | \[2^{1}-1\] | 1 |
| 2: | \[2^{2}-1\] | 3 |
| 3: | \[2^{3}-1\] | 7 |
| 4: | \[2^{4}-1\] | 3 × 5 |
| 5: | \[2^{5}-1\] | 31 |
| 6: | \[2^{6}-1\] | 32 × 7 |
| 7: | \[2^{7}-1\] | 127 |
| 8: | \[2^{8}-1\] | 3 × 5 × 17 |
| 9: | \[2^{9}-1\] | 7 × 73 |
| 10: | \[2^{10}-1\] | 3 × 11 × 31 |
| 11: | \[2^{11}-1\] | 23 × 89 |
| 12: | \[2^{12}-1\] | 32 × 5 × 7 × 13 |
| 13: | \[2^{13}-1\] | 8191 |
| 14: | \[2^{14}-1\] | 3 × 43 × 127 |
| 15: | \[2^{15}-1\] | 7 × 31 × 151 |
| 16: | \[2^{16}-1\] | 3 × 5 × 17 × 257 |
| 17: | \[2^{17}-1\] | 131071 |
| 18: | \[2^{18}-1\] | 33 × 7 × 19 × 73 |
| 19: | \[2^{19}-1\] | 524287 |
| 20: | \[2^{20}-1\] | 3 × 52 × 11 × 31 × 41 |
| 21: | \[2^{21}-1\] | 72 × 127 × 337 |
| 22: | \[2^{22}-1\] | 3 × 23 × 89 × 683 |
| 23: | \[2^{23}-1\] | 47 × 178481 |
| 24: | \[2^{24}-1\] | 32 × 5 × 7 × 13 × 17 × 241 |
| 25: | \[2^{25}-1\] | 31 × 601 × 1801 |
| 26: | \[2^{26}-1\] | 3 × 2731 × 8191 |
| 27: | \[2^{27}-1\] | 7 × 73 × 262657 |
| 28: | \[2^{28}-1\] | 3 × 5 × 29 × 43 × 113 × 127 |
| 29: | \[2^{29}-1\] | 233 × 1103 × 2089 |
| 30: | \[2^{30}-1\] | 32 × 7 × 11 × 31 × 151 × 331 |
| 31: | \[2^{31}-1\] | 2147483647 |
| 32: | \[2^{32}-1\] | 3 × 5 × 17 × 257 × 65537 |
| 33: | \[2^{33}-1\] | 7 × 23 × 89 × 599479 |
| 34: | \[2^{34}-1\] | 3 × 43691 × 131071 |
| 35: | \[2^{35}-1\] | 31 × 71 × 127 × 122921 |
| 36: | \[2^{36}-1\] | 33 × 5 × 7 × 13 × 19 × 37 × 73 × 109 |
| 37: | \[2^{37}-1\] | 223 × 616318177 |
| 38: | \[2^{38}-1\] | 3 × 174763 × 524287 |
| 39: | \[2^{39}-1\] | 7 × 79 × 8191 × 121369 |
| 40: | \[2^{40}-1\] | 3 × 52 × 11 × 17 × 31 × 41 × 61681 |
| 41: | \[2^{41}-1\] | 13367 × 164511353 |
| 42: | \[2^{42}-1\] | 32 × 72 × 43 × 127 × 337 × 5419 |
| 43: | \[2^{43}-1\] | 431 × 9719 × 2099863 |
| 44: | \[2^{44}-1\] | 3 × 5 × 23 × 89 × 397 × 683 × 2113 |
| 45: | \[2^{45}-1\] | 7 × 31 × 73 × 151 × 631 × 23311 |
| 46: | \[2^{46}-1\] | 3 × 47 × 178481 × 2796203 |
| 47: | \[2^{47}-1\] | 2351 × 4513 × 13264529 |
| 48: | \[2^{48}-1\] | 32 × 5 × 7 × 13 × 17 × 97 × 241 × 257 × 673 |
| 49: | \[2^{49}-1\] | 127 × 4432676798593<13> |
| 50: | \[2^{50}-1\] | 3 × 11 × 31 × 251 × 601 × 1801 × 4051 |
| 51: | \[2^{51}-1\] | 7 × 103 × 2143 × 11119 × 131071 |
| 52: | \[2^{52}-1\] | 3 × 5 × 53 × 157 × 1613 × 2731 × 8191 |
| 53: | \[2^{53}-1\] | 6361 × 69431 × 20394401 |
| 54: | \[2^{54}-1\] | 34 × 7 × 19 × 73 × 87211 × 262657 |
| 55: | \[2^{55}-1\] | 23 × 31 × 89 × 881 × 3191 × 201961 |
| 56: | \[2^{56}-1\] | 3 × 5 × 17 × 29 × 43 × 113 × 127 × 15790321 |
| 57: | \[2^{57}-1\] | 7 × 32377 × 524287 × 1212847 |
| 58: | \[2^{58}-1\] | 3 × 59 × 233 × 1103 × 2089 × 3033169 |
| 59: | \[2^{59}-1\] | 179951 × 3203431780337<13> |
| 60: | \[2^{60}-1\] | 32 × 52 × 7 × 11 × 13 × 31 × 41 × 61 × 151 × 331 × 1321 |
| 61: | \[2^{61}-1\] | 2305843009213693951<19> |
| 62: | \[2^{62}-1\] | 3 × 715827883 × 2147483647 |
| 63: | \[2^{63}-1\] | 72 × 73 × 127 × 337 × 92737 × 649657 |
| 64: | \[2^{64}-1\] | 3 × 5 × 17 × 257 × 641 × 65537 × 6700417 |
| 65: | \[2^{65}-1\] | 31 × 8191 × 145295143558111<15> |
| 66: | \[2^{66}-1\] | 32 × 7 × 23 × 67 × 89 × 683 × 20857 × 599479 |
| 67: | \[2^{67}-1\] | 193707721 × 761838257287<12> |
| 68: | \[2^{68}-1\] | 3 × 5 × 137 × 953 × 26317 × 43691 × 131071 |
| 69: | \[2^{69}-1\] | 7 × 47 × 178481 × 10052678938039<14> |
| 70: | \[2^{70}-1\] | 3 × 11 × 31 × 43 × 71 × 127 × 281 × 86171 × 122921 |
| 71: | \[2^{71}-1\] | 228479 × 48544121 × 212885833 |
| 72: | \[2^{72}-1\] | 33 × 5 × 7 × 13 × 17 × 19 × 37 × 73 × 109 × 241 × 433 × 38737 |
| 73: | \[2^{73}-1\] | 439 × 2298041 × 9361973132609<13> |
| 74: | \[2^{74}-1\] | 3 × 223 × 1777 × 25781083 × 616318177 |
| 75: | \[2^{75}-1\] | 7 × 31 × 151 × 601 × 1801 × 100801 × 10567201 |
| 76: | \[2^{76}-1\] | 3 × 5 × 229 × 457 × 174763 × 524287 × 525313 |
| 77: | \[2^{77}-1\] | 23 × 89 × 127 × 581283643249112959<18> |
| 78: | \[2^{78}-1\] | 32 × 7 × 79 × 2731 × 8191 × 121369 × 22366891 |
| 79: | \[2^{79}-1\] | 2687 × 202029703 × 1113491139767<13> |
| 80: | \[2^{80}-1\] | 3 × 52 × 11 × 17 × 31 × 41 × 257 × 61681 × 4278255361 |
| 81: | \[2^{81}-1\] | 7 × 73 × 2593 × 71119 × 262657 × 97685839 |
| 82: | \[2^{82}-1\] | 3 × 83 × 13367 × 164511353 × 8831418697<10> |
| 83: | \[2^{83}-1\] | 167 × 57912614113275649087721<23> |
| 84: | \[2^{84}-1\] | 32 × 5 × 72 × 13 × 29 × 43 × 113 × 127 × 337 × 1429 × 5419 × 14449 |
| 85: | \[2^{85}-1\] | 31 × 131071 × 9520972806333758431<19> |
| 86: | \[2^{86}-1\] | 3 × 431 × 9719 × 2099863 × 2932031007403<13> |
| 87: | \[2^{87}-1\] | 7 × 233 × 1103 × 2089 × 4177 × 9857737155463<13> |
| 88: | \[2^{88}-1\] | 3 × 5 × 17 × 23 × 89 × 353 × 397 × 683 × 2113 × 2931542417 |
| 89: | \[2^{89}-1\] | 618970019642690137449562111<27> |
| 90: | \[2^{90}-1\] | 33 × 7 × 11 × 19 × 31 × 73 × 151 × 331 × 631 × 23311 × 18837001 |
| 91: | \[2^{91}-1\] | 127 × 911 × 8191 × 112901153 × 23140471537<11> |
| 92: | \[2^{92}-1\] | 3 × 5 × 47 × 277 × 1013 × 1657 × 30269 × 178481 × 2796203 |
| 93: | \[2^{93}-1\] | 7 × 2147483647 × 658812288653553079<18> |
| 94: | \[2^{94}-1\] | 3 × 283 × 2351 × 4513 × 13264529 × 165768537521<12> |
| 95: | \[2^{95}-1\] | 31 × 191 × 524287 × 420778751 × 30327152671<11> |
| 96: | \[2^{96}-1\] | 32 × 5 × 7 × 13 × 17 × 97 × 193 × 241 × 257 × 673 × 65537 × 22253377 |
| 97: | \[2^{97}-1\] | 11447 × 13842607235828485645766393<26> |
| 98: | \[2^{98}-1\] | 3 × 43 × 127 × 4363953127297<13> × 4432676798593<13> |
| 99: | \[2^{99}-1\] | 7 × 23 × 73 × 89 × 199 × 153649 × 599479 × 33057806959<11> |
Index range: 0 – 99 next >>