tables > repunit

Repunits

For positive number bases \(b\geq2\), a repunit is a number whose only digit is \(1\). Their formula comes from the geometric series \(1+b+b^2+\ldots+b^{n-1}={b^n-1\over b-1}=R_b(n)\). Many terms share factors because if \(m\mid n\), then \(R_b(m)\mid R_b(n)\).

Links

> Base 10 Repunits (table, 0-999) > Base 2 Repunits (table, 0-999) > Base 3 Repunits (table, 0-999) > Base 4 Repunits (table, 0-999) > Base 5 Repunits (table, 0-999) > Base 6 Repunits (table, 0-999) > Base 7 Repunits (table, 0-999) > Base 8 Repunits (table, 0-999) > Base 9 Repunits (table, 0-999) > Base 11 Repunits (table, 0-999) > Base 12 Repunits (table, 0-999) > Base 13 Repunits (table, 0-999) > Base 14 Repunits (table, 0-999) > Base 15 Repunits (table, 0-999) > Base 16 Repunits (table, 0-999) > Base 17 Repunits (table, 0-999) > Base 18 Repunits (table, 0-999) > Base 19 Repunits (table, 0-999) > Base 20 Repunits (table, 0-999) > Base 21 Repunits (table, 0-999) > Base 22 Repunits (table, 0-999) > Base 23 Repunits (table, 0-999) > Base 24 Repunits (table, 0-999) > Base 25 Repunits (table, 0-999) > Base 26 Repunits (table, 0-999) > Base 27 Repunits (table, 0-999) > Base 28 Repunits (table, 0-999) > Base 29 Repunits (table, 0-999) > Base 30 Repunits (table, 0-999) > Base 31 Repunits (table, 0-999) > Base 32 Repunits (table, 0-999) > Base 33 Repunits (table, 0-999) > Base 34 Repunits (table, 0-999) > Base 35 Repunits (table, 0-999) > Base 36 Repunits (table, 0-999)