Repunits
For positive number bases \(b\geq2\), a repunit is a number whose only digit is \(1\). Their formula comes from the geometric series \(1+b+b^2+\ldots+b^{n-1}={b^n-1\over b-1}=R_b(n)\). Many terms share factors because if \(m\mid n\), then \(R_b(m)\mid R_b(n)\).
Links
> Base 10 Repunits
(table, 0-999)
> Base 2 Repunits
(table, 0-999)
> Base 3 Repunits
(table, 0-999)
> Base 4 Repunits
(table, 0-999)
> Base 5 Repunits
(table, 0-999)
> Base 6 Repunits
(table, 0-999)
> Base 7 Repunits
(table, 0-999)
> Base 8 Repunits
(table, 0-999)
> Base 9 Repunits
(table, 0-999)
> Base 11 Repunits
(table, 0-999)
> Base 12 Repunits
(table, 0-999)
> Base 13 Repunits
(table, 0-999)
> Base 14 Repunits
(table, 0-999)
> Base 15 Repunits
(table, 0-999)
> Base 16 Repunits
(table, 0-999)
> Base 17 Repunits
(table, 0-999)
> Base 18 Repunits
(table, 0-999)
> Base 19 Repunits
(table, 0-999)
> Base 20 Repunits
(table, 0-999)
> Base 21 Repunits
(table, 0-999)
> Base 22 Repunits
(table, 0-999)
> Base 23 Repunits
(table, 0-999)
> Base 24 Repunits
(table, 0-999)
> Base 25 Repunits
(table, 0-999)
> Base 26 Repunits
(table, 0-999)
> Base 27 Repunits
(table, 0-999)
> Base 28 Repunits
(table, 0-999)
> Base 29 Repunits
(table, 0-999)
> Base 30 Repunits
(table, 0-999)
> Base 31 Repunits
(table, 0-999)
> Base 32 Repunits
(table, 0-999)
> Base 33 Repunits
(table, 0-999)
> Base 34 Repunits
(table, 0-999)
> Base 35 Repunits
(table, 0-999)
> Base 36 Repunits
(table, 0-999)